0000000000038454

AUTHOR

Andrea Severino

showing 2 related works from this author

Effect of high temperature annealing (T > 1650 °C) on the morphological and electrical properties of p-type implanted 4H-SiC layers

2019

This work reports on the effect of high temperature annealing on the electrical properties of p-type implanted 4H-SiC. Ion implantations of Aluminum (Al) at different energies (30-200 keV) were carried out to achieve 300 nm thick acceptor box profiles with a concentration of about 10(20) at/cm(3). The implanted samples were annealed at high temperatures (1675-1825 degrees C). Morphological analyses of the annealed samples revealed only a slight increase of the surface roughness RMS up to 1775 degrees C, while this increase becomes more significant at 1825 degrees C (RMS = 1.2 nm). Room temperature Hall measurements resulted in a hole concentration in the range 0.65-1.34 x 10(18)/cm(3) and m…

4H-SiCMaterials scienceFabricationAnnealing (metallurgy)Analytical chemistrychemistry.chemical_element02 engineering and technologyActivation energy01 natural sciencesIonAluminium0103 physical sciencesSurface roughnessGeneral Materials ScienceElectrical measurements010302 applied physicsCondensed Matter - Materials ScienceMechanical EngineeringPhysics - Applied Physics021001 nanoscience & nanotechnologyCondensed Matter PhysicsAcceptorPost implantation annealingchemistryMechanics of MaterialsElectrical activationp-type implantation0210 nano-technologyMaterials Science in Semiconductor Processing
researchProduct

Ohmic Contacts on p-Type Al-Implanted 4H-SiC Layers after Different Post-Implantation Annealings

2019

This paper reports on the electrical activation and Ohmic contact properties on p-type Al-implanted silicon carbide (4H-SiC). In particular, the contacts were formed on 4H-SiC-implanted layers, subjected to three different post-implantation annealing processes, at 1675 &deg

FabricationMaterials science4H-SiCAnnealing (metallurgy)02 engineering and technology01 natural scienceslcsh:TechnologyArticlechemistry.chemical_compound0103 physical sciencesSilicon carbideGeneral Materials ScienceComposite materiallcsh:MicroscopyOhmic contactlcsh:QC120-168.85010302 applied physicsion-implantationDopantlcsh:QH201-278.5lcsh:TContact resistanceohmic contacts021001 nanoscience & nanotechnologyAcceptor3. Good healthIon implantationchemistrylcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct