0000000000038483

AUTHOR

Ali Mortezapour

0000-0002-1709-2509

showing 8 related works from this author

Protecting quantum resources via frequency modulation of qubits in leaky cavities

2018

Finding strategies to preserve quantum resources in open systems is nowadays a main requirement for reliable quantum-enhanced technologies. We address this issue by considering structured cavities embedding qubits driven by a control technique known as frequency modulation. We first study a single qubit in a lossy cavity to determine optimal modulation parameters and qubit-cavity coupling regime allowing a gain of four orders of magnitude concerning coherence lifetimes. We relate this behavior to the inhibition of the qubit effective decay rate rather than to stronger memory effects (non-Markovianity) of the system. We then exploit these findings in a system of noninteracting qubits embedde…

Quantum PhysicsMultidisciplinaryQuantum decoherenceComputer sciencelcsh:Rlcsh:MedicineFOS: Physical sciencesQuantum entanglementTopology01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasEntanglement open quantum systems protection of quantum correlations frequency modulationQubit0103 physical scienceslcsh:Qlcsh:Science010306 general physicsQuantum Physics (quant-ph)QuantumFrequency modulationCoherence (physics)Quantum computer
researchProduct

Quantumness and memory of one qubit in a dissipative cavity under classical control

2019

Hybrid quantum-classical systems constitute a promising architecture for useful control strategies of quantum systems by means of a classical device. Here we provide a comprehensive study of the dynamics of various manifestations of quantumness with memory effects, identified by non-Markovianity, for a qubit controlled by a classical field and embedded in a leaky cavity. We consider both Leggett-Garg inequality and quantum witness as experimentally-friendly indicators of quantumness, also studying the geometric phase of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field interaction, a stronger coupling to the classical control leads to enhancement of quant…

PhysicsCouplingQuantum PhysicsField (physics)010308 nuclear & particles physicsNon-MarkovianityFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeometric phaseQuantum stateOpen quantum systemQuantum mechanicsQubit0103 physical sciencesDissipative systemQuantum informationQuantum witnessQuantum Physics (quant-ph)010306 general physicsClassical controlQuantumLeggett–Garg inequalityAnnals of Physics
researchProduct

Quantumness and speedup limit of a qubit under transition frequency modulation

2022

Controlling and maintaining quantum properties of an open quantum system along its evolution is essential for both fundamental and technological aims. We assess the capability of a frequency-modulated qubit embedded in a leaky cavity to exhibit enhancement of its dynamical quantum features. The qubit transition frequency is sinusoidally modulated by an external driving field. We show that a properly optimized quantum witness effectively identifies quantum coherence protection due to frequency modulation while a standard quantum witness fails. We also find an evolution speedup of the qubit through proper manipulation of the modulation parameters of the driving field. Importantly, by introduc…

Qubit Transition Frequency Modulation Quantum Speedup Non-MarkovianityQuantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della Materia
researchProduct

Coherence and entanglement dynamics of vibrating qubits

2017

We investigate the dynamics of coherence and entanglement of vibrating qubits. Firstly, we consider a single trapped ion qubit inside a perfect cavity and successively we use it to construct a bipartite system made of two of such subsystems, taken identical and noninteracting. As a general result, we find that qubit vibration can lead to prolonging initial coherence in both single-qubit and two-qubit system. However, despite of this coherence preservation, we show that the decay of the entanglement between the two qubits is sped up by the vibrational motion of the qubits. Furthermore, we highlight how the dynamics of photon-phonon correlations between cavity mode and vibrational mode, which…

Atomic and Molecular Physics and OpticFOS: Physical sciencesQuantum entanglementSquashed entanglement01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasEntanglementComputer Science::Emerging TechnologiesQuantum mechanics0103 physical sciencesPhysical and Theoretical ChemistryElectrical and Electronic Engineering010306 general physicsQuantumVibrational modePhysicsQuantum PhysicsElectronic Optical and Magnetic MaterialQuantum PhysicsCavity modeAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVibrationQubitQubitW stateQuantum Physics (quant-ph)Entanglement distillationCoherenceCoherence (physics)
researchProduct

Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal

2022

A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian reservoir (free space) and in a photonic band-gap (PBG) crystal is carried out. The aim of the study is to assess the collective impact of structured environment and classical control of the system on the dynamics of quantum coherence, non-Markovianity, and estimation of parameters which are initially encoded in the atomic state. We show that the constructive interplay of PBG material as a medium and classical driving field as a part of system results in a significant enhancement of all the quantum traits of interest, compared to the case when the driven qutrit is in a Markovian e…

QutritQuantum PhysicsQuantum Fisher InformationPhotonic Crystals: Photonic Band-Gap MaterialFOS: Physical sciencesNon-MarkovianityQuantumness ProtectionQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaPhysical Review A
researchProduct

Validating and controlling quantum enhancement against noise by motion of a qubit

2019

Experimental validation and control of quantum traits for an open quantum system are important for any quantum information purpose. We consider a traveling atom qubit as a quantum memory with adjustable velocity inside a leaky cavity, adopting a quantum witness as a figure of merit for quantumness assessment. We show that this model constitutes an inherent physical instance where the quantum witness does not work properly if not suitably optimized. We then supply the optimal intermediate blind measurements which make the quantum witness a faithful tester of quantum coherence. We thus find that larger velocities protect quantumness against noise, leading to lifetime extension of hybrid qubit…

PhysicsQuantum PhysicsControl of quantum coherenceFOS: Physical sciencesQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasOpen quantum systemCavity quantum electrodynamicQubitQuantum mechanicsOpen quantum system0103 physical sciencesFigure of meritQubitQuantum information010306 general physicsQuantum Physics (quant-ph)QuantumCoherence (physics)
researchProduct

Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

2017

Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocit…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)Markov processFOS: Physical sciencesQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeComputer Science::Emerging Technologies0103 physical sciencesInitial value problemStatistical physics010306 general physicsQuantumqubitInstrumentationPhysicsQuantum Physicsopen quantum systemAtom (order theory)Quantum Physicsnon-MarkovianityQubitScalabilitysymbolscavity-QEDentanglementQuantum Physics (quant-ph)
researchProduct

Non-Markovianity and Coherence of a Moving Qubit inside a Leaky Cavity

2017

Non-Markovian features of a system evolution, stemming from memory effects, may be utilized to transfer, storage, and revive basic quantum properties of the system states. It is well known that an atom qubit undergoes non-Markovian dynamics in high quality cavities. We here consider the qubit-cavity interaction in the case when the qubit is in motion inside a leaky cavity. We show that, owing to the inhibition of the decay rate, the coherence of the traveling qubit remains closer to its initial value as time goes by compared to that of a qubit at rest. We also demonstrate that quantum coherence is preserved more efficiently for larger qubit velocities. This is true independently of the evol…

Statistics and ProbabilitySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciFOS: Physical sciencesMarkov processNon-Markovianity01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeComputer Science::Emerging TechnologiesQuantum mechanics0103 physical sciencesInitial value problem010306 general physicsQuantumMathematical PhysicsPhysicsQuantum PhysicsMoving atom qubitStatistical and Nonlinear PhysicsQuantum PhysicsCavity quantum electrodynamicQuantum coherenceQubitOpen quantum systemsymbolsQuantum Physics (quant-ph)Coherence (physics)
researchProduct