6533b854fe1ef96bd12ae915
RESEARCH PRODUCT
Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments
Rosario Lo FrancoAli MortezapourMahdi Ahmadi Borjisubject
Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)Markov processFOS: Physical sciencesQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeComputer Science::Emerging Technologies0103 physical sciencesInitial value problemStatistical physics010306 general physicsQuantumqubitInstrumentationPhysicsQuantum Physicsopen quantum systemAtom (order theory)Quantum Physicsnon-MarkovianityQubitScalabilitysymbolscavity-QEDentanglementQuantum Physics (quant-ph)description
Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |