0000000000039719

AUTHOR

Fernando Revert

Selective targeting of collagen IV in the cancer cell microenvironment reduces tumor burden

Goodpasture antigen-binding protein (GPBP) is an exportable1 Ser/Thr kinase that induces collagen IV expansion and has been associated with chemoresistance following epithelial-to-mesenchymal transition (EMT). Here we demonstrate that cancer EMT phenotypes secrete GPBP (mesenchymal GPBP) which displays a predominant multimeric oligomerization and directs the formation of previously unrecognized mesh collagen IV networks (mesenchymal collagen IV). Yeast two-hybrid (YTH) system was used to identify a 260SHCIE264 motif critical for multimeric GPBP assembly which then facilitated design of a series of potential peptidomimetics. The compound 3-[4''-methoxy-3,2'-dimethyl-(1,1';4',1'')terphenyl-2'…

research product

Polyethyleneimine-based immunopolyplex for targeted gene transfer in human lymphoma celllines

Background Specific and efficient delivery of genes into targeted cells is a priority objective in non-viral gene therapy. Polyethyleneimine-based polyplexes have been reported to be good non-viral transfection reagents. However, polyplex-mediated DNA delivery occurs through a non-specific mechanism. This article reports the construction of an immunopolyplex, a targeted non-viral vector based on a polyplex backbone, and its application in gene transfer over human lymphoma cell lines. Methods Targeting elements (biotin-labeled antibodies), which should recognize a specific element of the target cell membrane and promote nucleic acid entry into the cell, were attached to the polyplex backbone…

research product

Antitumor effect of B16 melanoma cells genetically modified with the angiogenesis inhibitor rnasin.

The growth of new blood vessels is an essential condition for the development of tumors with a diameter greater than 1-2 mm and also for their metastatic dissemination. RNasin, the placental ribonuclease inhibitor, is known to have antiangiogenic activity through the inhibition of angiogenin and basic fibroblast growth factor. Nevertheless, the administration of the recombinant form of a protein poses several limitations; as a result, we have studied the antitumor effect of RNasin in a murine gene therapy model. RNasin cDNA was subcloned into the pcDNA3 expression vector, and the resulting recombinant plasmid was used to transfect the B16 murine melanoma cell line. An RNasin inverted constr…

research product

Human Biliverdin Reductase Suppresses Goodpasture Antigen-binding Protein (GPBP) Kinase Activity

The Ser/Thr/Tyr kinase activity of human biliverdin reductase (hBVR) and the expression of Goodpasture antigen-binding protein (GPBP), a nonconventional Ser/Thr kinase for the type IV collagen of basement membrane, are regulated by tumor necrosis factor (TNF-α). The pro-inflammatory cytokine stimulates kinase activity of hBVR and activates NF-κB, a transcriptional regulator of GPBP mRNA. Increased GPBP activity is associated with several autoimmune conditions, including Goodpasture syndrome. Here we show that in HEK293A cells hBVR binds to GPBP and down-regulates its TNF-α-stimulated kinase activity; this was not due to a decrease in GPBP expression. Findings with small interfering RNA to h…

research product

Phosphorylation of the Goodpasture antigen by type A protein kinases.

Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human …

research product

Goodpasture Antigen-binding Protein Is a Soluble Exportable Protein That Interacts with Type IV Collagen

Goodpasture-antigen binding protein (GPBP) is a nonconventional Ser/Thr kinase for basement membrane type IV collagen. Various studies have questioned these findings and proposed that GPBP serves as transporter of ceramide between the endoplasmic reticulum and the Golgi apparatus. Here we show that cells expressed at least two GPBP isoforms resulting from canonical (77-kDa) and noncanonical (91-kDa) mRNA translation initiation. The 77-kDa polypeptide interacted with type IV collagen and localized as a soluble form in the extracellular compartment. The 91-kDa polypeptide and its derived 120-kDa polypeptide associated with cellular membranes and regulated the extracellular levels of the 77-kD…

research product

Pharmacodynamic approach to study the gene transfer process employing non-viral vectors

Abstract In the present work we set out to apply pharmacodynamic concepts derived from dose–response curves (Potency and Efficacy) to characterize the gene transfer efficiency of a vector:DNA complex. We employed two widely used vectors, the cationic lipid DOTAP (N,N,N-trimethyl 1-2-3-bis (1-oxo-9-octa-decenyl)oxy-(Z,Z)-1-propanaminium methyl sulfate) and the cationic polymer PEI (polyethylenimine, 800 kDa) to transfect several constructions of the green fluorescent protein cDNA. The analysis of dose–response curves indicated that in all cases the goodness-of-fit was > 0.99. Potency is a measure that provides information on gene activity per amount of DNA. Efficacy is a measure of maximum g…

research product

Goodpasture Antigen-binding Protein (GPBP) Directs Myofibril Formation

Goodpasture antigen-binding protein-1 (GPBP-1) is an exportable non-conventional Ser/Thr kinase that regulates glomerular basement membrane collagen organization. Here we provide evidence that GPBP-1 accumulates in the cytoplasm of differentiating mouse myoblasts prior to myosin synthesis. Myoblasts deficient in GPBP-1 display defective myofibril formation, whereas myofibrils assemble with enhanced efficiency in those overexpressing GPBP-1. We also show that GPBP-1 targets the previously unidentified GIP130 (GPBP-interacting protein of 130 kDa), which binds to myosin and promotes its myofibrillar assembly. This report reveals that GPBP-1 directs myofibril formation, an observation that expa…

research product

Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum

Abstract DNA complexes formed with nonviral vectors such as polyethylenimine (PEI) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) are widely used in gene therapy. These complexes prevent the interaction of DNA with the fluorescent probes usually employed to quantify DNA. We thus studied the procedures for DNA quantification from DNA complexes as well as their stability in the presence of DNase or mouse, rat and human sera. Release of the DNA from its complexes was accomplished by increasing the pH of the medium (from 7.3 to 13.4) or by adding heparin. The stability against degradation was tested in vitro, by incubating the complexes at 37°C in the presence of DNase I and sera from the …

research product

Increased Goodpasture antigen-binding protein expression induces type IV collagen disorganization and deposit of immunoglobulin A in glomerular basement membrane

Increased expression of Goodpasture antigen-binding protein (GPBP), a protein that binds and phosphorylates basement membrane collagen, has been associated with immune complex-mediated pathogenesis. However, recent reports have questioned this biological function and proposed that GPBP serves as a cytosolic ceramide transporter (CERTL). Thus, the role of GPBP in vivo remains unknown. New Zealand White (NZW) mice are considered healthy animals although they convey a genetic predisposition for immune complex-mediated glomerulonephritis. Here we show that NZW mice developed age-dependent lupus-prone autoimmune response and immune complex-mediated glomerulonephritis characterized by elevated GP…

research product

Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles

The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection…

research product

Characterization and Expression of Multiple Alternatively Spliced Transcripts of the Goodpasture Antigen Gene Region. Goodpasture Antibodies Recognize Recombinant Proteins Representing the Autoantigen and One of its Alternative Forms

Collagen IV, the major component of basement membranes, is composed of six distinct alpha chains (alpha 1-alpha 6). Atypically among the collagen IV genes, the exons encoding the carboxyl-terminal region of the human alpha 3(IV) chain undergo alternative splicing. This region has been designated as the Goodpasture antigen because of its reactivity in the kidney and lung with the pathogenic autoantibodies causing Goodpasture syndrome. The data presented in this report demonstrate that, in human kidney, the gene region encompassing the Goodpasture antigen generates at least six alternatively spliced transcripts predicting five distinct proteins that differ in their carboxyl-terminus and retai…

research product

Characterization of a Novel Type of Serine/Threonine Kinase That Specifically Phosphorylates the Human Goodpasture Antigen

Goodpasture disease is an autoimmune disorder that occurs naturally only in humans. Also exclusive to humans is the phosphorylation process that targets the unique N-terminal region of the Goodpasture antigen. Here we report the molecular cloning of GPBP (Goodpasture antigen-binding protein), a previously unknown 624-residue polypeptide. Although the predicted sequence does not meet the conventional structural requirements for a protein kinase, its recombinant counterpart specifically binds to and phosphorylates the exclusive N-terminal region of the human Goodpasture antigen in vitro. This novel kinase is widely expressed in human tissues but shows preferential expression in the histologic…

research product

Unicellular ancestry and mechanisms of diversification of Goodpasture antigen-binding protein.

The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen–binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase). We sought to determine the evolutionary origin of GPBP isoforms. Our findings reveal the presence of GPBP in unicellular protists, with GPBP-2 as the most ancient isoform. In vertebrates, GPBP-1 assumed extracellular function that is further e…

research product