0000000000039731
AUTHOR
Angélique Renzaho
Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms
The succinct metaphor, ‘the immune system's loaded gun', has been used to describe the role of mast cells (MCs) due to their storage of a wide range of potent pro-inflammatory and antimicrobial mediators in secretory granules that can be released almost instantly on demand to fight invaders. Located at host–environment boundaries and equipped with an arsenal of pattern recognition receptors, MCs are destined to be rapid innate sensors of pathogens penetrating endothelial and epithelial surfaces. Although the importance of MCs in antimicrobial and antiparasitic defense has long been appreciated, their role in raising the alarm against viral infections has been noted only recently. Work on cy…
Cytomegalovirus-Associated Inhibition of Hematopoiesis Is Preventable by Cytoimmunotherapy With Antiviral CD8 T Cells
Reactivation of latent cytomegalovirus (CMV) in recipients of hematopoietic cell transplantation (HCT) not only results in severe organ manifestations, but can also cause "graft failure" resulting in bone marrow (BM) aplasia. This inhibition of hematopoietic stem and progenitor cell engraftment is a manifestation of CMV infection that is long known in clinical hematology as "myelosuppression." Previous studies in a murine model of sex-chromosome mismatched but otherwise syngeneic HCT and infection with murine CMV have shown that transplanted hematopoietic cells (HC) initially home to the BM stroma of recipients but then fail to further divide and differentiate. Data from this model were in …
CD8 T Cells Control Cytomegalovirus Latency by Epitope-Specific Sensing of Transcriptional Reactivation
ABSTRACT During murine cytomegalovirus (mCMV) latency in the lungs, most of the viral genomes are transcriptionally silent at the major immediate-early locus, but rare and stochastic episodes of desilencing lead to the expression of IE1 transcripts. This low-frequency but perpetual expression is accompanied by an activation of lung-resident effector-memory CD8 T cells specific for the antigenic peptide 168-YPHFMPTNL-176, which is derivedfrom the IE1 protein. These molecular and immunological findings were combined in the “silencing/desilencing and immune sensing hypothesis” of cytomegalovirus latency and reactivation. This hypothesis proposes that IE1 gene expression proceeds to cell surfac…
SARS-CoV-2 genome surveillance in Mainz, Germany, reveals convergent origin of the N501Y spike mutation in a hospital setting
AbstractWhile establishing a regional SARS-Cov-2 variant surveillance by genome sequencing, we have identified three infected individuals in a clinical setting (two long-term hospitalized patients and a nurse) that shared the spike N501Y mutation within a genotype background distinct from the current viral variants of concern. We suggest that the adaptive N501Y mutation, known to increase SARS-CoV-2 transmissibility, arose by convergent evolution around December in Mainz, Germany. Hospitalized patients with a compromised immune system may be a potential source of novel viral variants, which calls for monitoring viral evolution by genome sequencing in clinical settings.
Immune Evasion Proteins Enhance Cytomegalovirus Latency in the Lungs
ABSTRACT CD8 T cells control cytomegalovirus (CMV) infection in bone marrow transplantation recipients and persist in latently infected lungs as effector memory cells for continuous sensing of reactivated viral gene expression. Here we have addressed the question of whether viral immunoevasins, glycoproteins that specifically interfere with antigen presentation to CD8 T cells, have an impact on viral latency in the murine model. The data show that deletion of immunoevasin genes in murine CMV accelerates the clearance of productive infection during hematopoietic reconstitution and leads to a reduced latent viral genome load, reduced latency-associated viral transcription, and a lower inciden…
Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues.
ABSTRACT Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that la…
Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell “Memory Inflation” and Avoid Immune Evasion
Acute infection with murine cytomegalovirus (mCMV) is controlled by CD8+ T cells and develops into a state of latent infection, referred to as latency, which is defined by lifelong maintenance of viral genomes but absence of infectious virus in latently infected cell types. Latency is associated with an increase in numbers of viral epitope-specific CD8+ T cells over time, a phenomenon known as “memory inflation” (MI). The “inflationary” subset of CD8+ T cells has been phenotyped as KLRG1+CD62L- effector-memory T cells (iTEM). It is agreed upon that proliferation of iTEM requires repeated episodes of antigen presentation, which implies that antigen-encoding viral genes must be transcribed du…
Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency
Expansion of the CD8 T-cell memory pool, also known as ‘memory inflation’, for certain but not all viral epitopes in latently infected host tissues is a special feature of the immune response to cytomegalovirus. The Ld-presented murine cytomegalovirus (mCMV) immediate–early (IE) 1 peptide is the prototype of an epitope that is associated with memory inflation. Based on the detection of IE1 transcripts in latently infected lungs it was previously proposed that episodes of viral gene expression and antigenic activity due to desilencing of a limited number of viral genes may drive epitope-specific memory inflation. This would imply direct antigen presentation through latently infected host tis…
Liver Sinusoidal Endothelial Cells Are a Site of Murine Cytomegalovirus Latency and Reactivation▿
ABSTRACT Latent cytomegalovirus (CMV) is frequently transmitted by organ transplantation, and its reactivation under conditions of immunosuppressive prophylaxis against graft rejection by host-versus-graft disease bears a risk of graft failure due to viral pathogenesis. CMV is the most common cause of infection following liver transplantation. Although hematopoietic cells of the myeloid lineage are a recognized source of latent CMV, the cellular sites of latency in the liver are not comprehensively typed. Here we have used the BALB/c mouse model of murine CMV infection to identify latently infected hepatic cell types. We performed sex-mismatched bone marrow transplantation with male donors …
A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum
Gene m164 of murine cytomegalovirus belongs to the large group of 'private' genes that show no homology to those of other cytomegalovirus species and are thought to represent 'host adaptation' genes involved in virus-host interaction. Previous interest in the m164 gene product was based on the presence of an immunodominant CD8 T-cell epitope presented at the surface of infected cells, despite interference by viral immune-evasion proteins. Here, we provide data to reveal that the m164 gene product shows unusual features in its cell biology. A novel strategy of mass-spectrometric analysis was employed to map the N terminus of the mature protein, 107 aa downstream of the start site of the pred…
Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors.
ABSTRACT Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus …
Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the conte…
Revisiting CD8 T-cell ‘Memory Inflation’: New Insights with Implications for Cytomegaloviruses as Vaccine Vectors
Murine models of cytomegalovirus (CMV) infection have revealed an exceptional kinetics of the immune response. After resolution of productive infection, transient contraction of the viral epitope-specific CD8 T-cell pool was found to be followed by a pool expansion specific for certain viral epitopes during non-productive &lsquo
Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues
Major immediate-early (MIE) transcriptional enhancers of cytomegaloviruses are key regulators that are regarded as determinants of virus replicative fitness and pathogenicity. The MIE locus of murine cytomegalovirus (mCMV) shows bidirectional gene-pair architecture, with a bipartite enhancer flanked by divergent core promoters. Here, we have constructed recombinant viruses mCMV-ΔEnh1 and mCMV-ΔEnh2 to study the impact of either enhancer component on bidirectional MIE gene transcription and on virus replication in cell culture and various host tissues that are relevant to CMV disease. The data revealed that the two unipartite enhancers can operate independently, but synergize in enhancing MI…