0000000000040315

AUTHOR

David Hajnal

showing 6 related works from this author

Effect of mixing and spatial dimension on the glass transition

2009

We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparitie…

Materials sciencepacs:82.70.DdCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)business.industryDiagramRandom close packBinary numberFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCondensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Soft Condensed MatterOpticsPhase (matter)Mode couplingSoft Condensed Matter (cond-mat.soft)ddc:530Glass transitionbusinesspacs:64.70.Q-Mixing (physics)Condensed Matter - Statistical Mechanicspacs:64.70.PLine (formation)
researchProduct

Delocalization-Localization Transition due to Anharmonicity

2008

Analytical and numerical calculations for a reduced Fermi-Pasta-Ulam chain demonstrate that energy localization does not require more than one conserved quantity. Clear evidence for the existence of a sharp delocalization-localization transition at a critical amplitude is given. Approaching the critical amplitude from above and below, diverging time scales occur. Above the critical amplitude, the energy packet converges towards a discrete breather. Nevertheless, ballistic energy transportation is present, demonstrating that its existence does not necessarily imply delocalization.

PhysicsCondensed matter physicsBreatherAnharmonicityGeneral Physics and AstronomyFOS: Physical sciencesConserved quantityCondensed Matter - Other Condensed MatterDelocalized electronAmplitudeChain (algebraic topology)Quantum mechanicsEnergy (signal processing)Other Condensed Matter (cond-mat.other)
researchProduct

Strain pattern in supercooled liquids

2016

Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern ($\,\sim \cos{(4\theta)}/r^2\,$), characteristic for elastic response, even in liquids at long times [1]. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both, video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that long-ranged and long-lived strain-signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the stru…

PhysicsCondensed matter physicsStrain (chemistry)Zero (complex analysis)FOS: Physical sciencesGeneral Physics and AstronomyVideo microscopy02 engineering and technologyCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology01 natural sciencesShear modulusCondensed Matter::Soft Condensed Matter0103 physical sciencesShear stressSoft Condensed Matter (cond-mat.soft)ddc:530010306 general physics0210 nano-technologySupercoolingGlass transitionBrownian motion
researchProduct

Shear moduli of two dimensional binary glasses

2012

The shear moduli of two-component glasses in two dimensions are studied within mode coupling theory. Varying the concentration, strong mixing effects are observed along the glass transition lines for two interaction potentials. Nonoverlapping disks with size ratios between 0.3 and 0.9, and point particles interacting with (magnetic) dipoles of strength ratio between 0.1 and 0.6 are considered. Equilibrium structure factors (partially obtained from Monte Carlo simulations) and glass form factors, and perturbative calculations show that a softening of the elastic shear constant of glass upon adding another component arises from a dilution effect of the majority component. For very disparate m…

DipoleMaterials scienceShear (geology)Condensed matter physicsMonte Carlo methodMode couplingBinary numberddc:530General ChemistryCondensed Matter PhysicsGlass transitionSofteningModuli
researchProduct

Glass transition of binary mixtures of dipolar particles in two dimensions

2010

We study the glass transition of binary mixtures of dipolar particles in two dimensions within the framework of mode-coupling theory, focusing in particular on the influence of composition changes. In a first step, we demonstrate that the experimental system of K\"onig et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by point dipoles through a comparison between the experimental partial structure factors and those from our Monte Carlo simulation. For such a mixture of point particles we show that there is always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks. We demonstrate that the predicted plasticization effect i…

Materials scienceCondensed matter physicsMonte Carlo methodFOS: Physical sciencesThermodynamicsBinary numberDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Soft Condensed MatterCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsColloidDipoleExperimental systemMaterials ChemistryCeramics and CompositesSoft Condensed Matter (cond-mat.soft)Point (geometry)Glass transitionMixing (physics)Journal of Non-Crystalline Solids
researchProduct

Glass transition in confined geometry.

2010

Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids confined between two parallel flat hard walls. The theory contains the standard MCT equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior of the glass transtion line as a result of the structural changes related to layering.

Materials scienceCondensed matter physicsStructure (category theory)General Physics and AstronomyFOS: Physical sciencesFunction (mathematics)Condensed Matter - Soft Condensed MatterEquilibrium densityPhysics::Fluid DynamicsLine (geometry)Soft Condensed Matter (cond-mat.soft)LayeringMicroscopic theoryGlass transitionPhase diagramPhysical review letters
researchProduct