0000000000040409

AUTHOR

Sebastian Neumann

Silica as a morphogenetically active inorganic polymer.

At present the scaffolds used for bioprinting of cells do not elicit morphogenetic responses in the cells. In the present study we approached a solution by studying the effect of an inorganic silica supplement added to an Na-alginate matrix. Bone- and osteoblast-like SaOS-2 cells were embedded into this organic polymeric matrix which was additionally enriched with 400 μM prehydrolyzed TEOS [tetra-ethoxy-silane], a source of ortho-silicate. In this silica-based matrix the cells synthesized hydroxyapatite crystallites after exposure to a mineralization activation cocktail composed of β-glycerophosphate, ascorbic acid and dexamethasone. The degree of hydroxyapatite synthesis, determined by sta…

research product

A novel and ancient group of type I keratins with members in bichir, sturgeon and gar

Abstract 1. Background Vertebrate epithelial cells typically express a specific set of keratins. In teleosts, keratins are also present in a variety of mesenchymal cells, which usually express vimentin. Significantly, our previous studies revealed that virtually all known teleost keratins evolved independently from those present in terrestrial vertebrates. To further elucidate the evolutionary scenario that led to the large variety of keratins and their complex expression patterns in present day teleosts, we have investigated their presence in bichir, sturgeon and gar. 2. Results We have discovered a novel group of type I keratins with members in all three of these ancient ray-finned fish, …

research product

Osteogenic potential of a biosilica-coated P(UDMA-co-MPS) copolymer

A P(UDMA-co-MPS) copolymer was surface-functionalized through the polycondensation activity of the enzyme silicatein. The resulting biosilica coating significantly enhanced mineralization of osteoblastic cells, thereby revealing its osteogenic potential. Consequently, the functionalized copolymer may be explored as an alternative to conventionally used acrylics in applications where stable bone-material interfaces are required.

research product

Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for three-dimensional tissue engineering

Pursuing our aim to develop a biomimetic synthetic scaffold suitable for tissue engineering, we embedded bone cells, osteoblast-related SaOS-2 cells and osteoclast-like RAW 264.7 cells, into beads, formed of a Na-alginate-based or a silica-containing Na-alginate-based hydrogel matrix. The beads were incubated either separately (only one cell line in a culture dish) or co-incubated (SaOS-2-containing beads and RAW 264.7 beads). The alginate and alginate/silica hydrogel matrices were found not to impair the viability of the encapsulated cells. In these matrices the SaOS-2 cells retain their capacity to synthesize hydroxyapatite crystallites. The mechanical properties, including surface roughn…

research product