0000000000040483
AUTHOR
Cyril Nicaud
The Average State Complexity of the Star of a Finite Set of Words Is Linear
We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.
Complexity of operations on cofinite languages
International audience; We study the worst case complexity of regular operation on cofinite languages (i.e., languages whose complement is finite) and provide algorithms to compute efficiently the resulting minimal automata.
A challenging family of automata for classical minimization algorithms
In this paper a particular family of deterministic automata that was built to reach the worst case complexity of Hopcroft's state minimization algorithm is considered. This family is also challenging for the two other classical minimization algorithms: it achieves the worst case for Moore's algorithm, as a consequence of a result by Berstel et al., and is of at least quadratic complexity for Brzozowski's solution, which is our main contribution. It therefore constitutes an interesting family, which can be useful to measure the efficiency of implementations of well-known or new minimization algorithms.