6533b7cefe1ef96bd1257140

RESEARCH PRODUCT

The Average State Complexity of the Star of a Finite Set of Words Is Linear

Frédérique BassinoCyril NicaudLaura Giambruno

subject

Uniform distribution (continuous)ComputationStar (game theory)0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsInteger0202 electrical engineering electronic engineering information engineeringTime complexityFinite setMathematicsstar operationDiscrete mathematicsaverage case analysistate complexity16. Peace & justiceBinary logarithm[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]automatonState complexity010201 computation theory & mathematicsfinite language020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory

description

We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.

https://doi.org/10.1007/978-3-540-85780-8_10