0000000000040484
AUTHOR
Laura Giambruno
The Average State Complexity of the Star of a Finite Set of Words Is Linear
We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.
ON-LINE CONSTRUCTION OF A SMALL AUTOMATON FOR A FINITE SET OF WORDS
In this paper we describe a "light" algorithm for the on-line construction of a small automaton recognising a finite set of words. The algorithm runs in linear time. We carried out good experimental results on real dictionaries, on biological sequences and on the sets of suffixes (resp. factors) of a set of words that shows how our automaton is near to the minimal one. For the suffixes of a text, we propose a modified construction that leads to an even smaller automaton. We moreover construct linear algorithms for the insertion and deletion of a word in a finite set, directly from the constructed automaton.
An automata-theoretic approach to the study of the intersection of two submonoids of a free monoid
We investigate the intersection of two finitely generated submonoids of the free monoid on a finite alphabet. To this purpose, we consider automata that recognize such submonoids and we study the product automata recognizing their intersection. By using automata methods we obtain a new proof of a result of Karhumaki on the cha- racterization of the intersection of two submonoids of rank two, in the case of prefix (or suffix) generators. In a more general setting, for an arbitrary number of generators, we prove that if H and K are two finitely generated submonoids generated by prefix sets such that the product automaton associated to H ∩ K has a given special property then �(H ∩ K) ≤ �(H)�(K…
Transducers for the bidirectional decoding of prefix codes
AbstractWe construct a transducer for the bidirectional decoding of words encoded by the method introduced by Girod (1999) in [5] and we prove that it is bideterministic and that it can be used both for the left-to-right and the right-to-left decoding.We also give a similar construction for a transducer that decodes in both directions words encoded by a generalization of Girod’s encoding method. We prove that it has the same properties as those of the previous transducer. In addition we show that it has a single initial/final state and that it is minimal.
Dictionary-symbolwise flexible parsing
AbstractLinear-time optimal parsing algorithms are rare in the dictionary-based branch of the data compression theory. A recent result is the Flexible Parsing algorithm of Matias and Sahinalp (1999) that works when the dictionary is prefix closed and the encoding of dictionary pointers has a constant cost. We present the Dictionary-Symbolwise Flexible Parsing algorithm that is optimal for prefix-closed dictionaries and any symbolwise compressor under some natural hypothesis. In the case of LZ78-like algorithms with variable costs and any, linear as usual, symbolwise compressor we show how to implement our parsing algorithm in linear time. In the case of LZ77-like dictionaries and any symbol…
The average state complexity of rational operations on finite languages is linear
Considering the uniform distribution on sets of m non-empty words whose sum of lengths is n, we establish that the average state complexities of the rational operations are asymptotically linear.
A Generalization of Girod’s Bidirectional Decoding Method to Codes with a Finite Deciphering Delay
In this paper we generalize an encoding method due to Girod (cf. [6]) using prefix codes, that allows a bidirectional decoding of the encoded messages. In particular we generalize it to any finite alphabet A, to any operation defined on A, to any code with finite deciphering delay and to any key x ∈ A+ , on a length depending on the deciphering delay. We moreover define, as in [4], a deterministic transducer for such generalized method. We prove that, fixed a code X ∈ A* with finite deciphering delay and a key x ∈ A *, the transducers associated to different operations are isomorphic as unlabelled graphs. We also prove that, for a fixed code X with finite deciphering delay, transducers asso…
A Generalization of Girod's Bidirectional Decoding Method to Codes with a Finite Deciphering Delay
Girod’s encoding method has been introduced in order to efficiently decode from both directions messages encoded by using finite prefix codes. In the present paper, we generalize this method to finite codes with a finite deciphering delay. In particular, we show that our decoding algorithm can be realized by a deterministic finite transducer. We also investigate some properties of the underlying unlabeled graph.
Complexity of operations on cofinite languages
International audience; We study the worst case complexity of regular operation on cofinite languages (i.e., languages whose complement is finite) and provide algorithms to compute efficiently the resulting minimal automata.
On the size of transducers for bidirectional decoding of prefix codes
In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [ IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X . We find some bounds of such a number of states in relation wi…