Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor
The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the thr…
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Competing factors on the frequency separation between the OH stretching modes in water
Abstract Recent simulations demonstrated that the inhomogeneous broadening as observed in the vibrational spectra of liquid water at ambient conditions can be viewed as a large vibrational splitting of symmetric and asymmetric OH stretching modes, due to the asymmetry of the local hydrogen-bonding network [J. Phys. Chem. Lett., 2013, 4(19), pp 3245–3250]. In this work, we show that the finite temperature and the liquid phase do not only modulate the local hydrogen-bonding asymmetry of water molecules, but also the intramolecular coupling strength. These two factors compete together in the determination of the overall magnitude of the frequency separation between the two OH stretching modes …
Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions
Abstract Transport and deposition of copper in the Earth's crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment o…
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
Cellulose-inorganic hybrids of strongly reduced thermal conductivity
Abstract The employment of atomic layer deposition and spin coating techniques for preparing inorganic-organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray reflectivity showed the superlattice formation for the nanolaminate structures and atomic force microscopy established the efficient control of the CNCs surface coverage on the Al-doped ΖnO by manipulating the concentration of the spin coating solution. Thickness characterization of the hybrid structures was performed via both ellipsometry and X-ray reflectivity and the thermal conductivity was examined by time domain thermoreflectance technique. It appears that ev…
Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review
Abstract Thermal sprayed Fe-based amorphous coatings exhibit excellent wear and corrosion resistance, and thus have been widely utilized for enhancing the performance of material surfaces. In this paper, important research progresses achieved in regards to deposition technologies and properties of thermal sprayed Fe-based amorphous coatings are reviewed. In particular, the dependence of wear and corrosion resistance of the coatings on processing parameters, e.g., kinetic energy, particle size, gas flow rate, and heat treatment temperature are summarized. Moreover, the utilization of reinforced phases and alloy elements for enhancing the wear and corrosion resistance of the coatings are pres…
Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation
Hydrogen dissociation is a critical step in many hydrogenation reactions central to industrial chemical production and pollutant removal. This step typically utilizes the favorable band structure of precious metal catalysts like platinum and palladium to achieve high efficiency under mild conditions. Here we demonstrate that aluminum nanocrystals (Al NCs), when illuminated, can be used as a photocatalyst for hydrogen dissociation at room temperature and atmospheric pressure, despite the high activation barrier toward hydrogen adsorption and dissociation. We show that hot electron transfer from Al NCs to the antibonding orbitals of hydrogen molecules facilitates their dissociation. Hot elect…
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the …
Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments
The O–H stretching vibrational modes of water molecules are sensitive to their local environments. Here, we applied effective normal-mode analysis to isolate contributions of each of the two hydrogen atoms to the vibrational modes ν1 and ν3 of water molecules in the liquid phase. We demonstrate that the decoupling of the two contributions fd and the frequency splitting of the vibrational modes Δω13 are inextricably related to the symmetry of the hydrogen bonding environment. We show that ambient liquid water modeled at the density functional level of theory exhibits the characteristics of an asymmetric environment with an average decoupling of 0.82 and a splitting of 137 inverse centimeters…
Electron microprobe technique for the determination of iron oxidation state in silicate glasses
We present a new calibration for the determination of the iron oxidation state in silicate glasses by electron probe microanalysis (EPMA) with the "flank method." This method is based on the changes in both intensity and wavelength of the FeLα and FeLβ X-ray emission lines with iron oxidation state. The flank method utilizes the maximum difference for the FeLα and FeLβ spectra observed at the peak flanks between different standard materials, which quantitatively correlates with the Fe2+ content. Provided that this correlation is calibrated on reference materials, the Fe2+/ΣFe ratio can be determined for samples with known total Fe content. Two synthetic Fe-rich ferric and ferrous garnet end…
Mortality in COVID-19 disease patients: Correlating Association of Major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants
Highlights • In addition to ethnicity, socio-economic factors, prior vaccinations and exposure to other coronaviruses, other factors need to be considered to explain geographical and regional variations in susceptibility, severity of clinical expression of COVID-19 disease and outcomes. • Differences in peptide binding of SARS-CoV-2 variants to MHC class II, but not to MHC class I alleles frequent in individuals with African, Asian or Caucasian descent could be identified. • Single mutations in the wildtype of SARS-CoV-2, the so called B strain or L strain impact on MHC presentation • Most likely there is selective pressure from MHC class II alleles in regard to binding of the ORF8 (L84S) v…
Deposition of hollow sphere In2O3 coatings by liquid flame spray
Hollow sphere In(OH)3 coatings were deposited by a simple liquid flame spray with hollow sphere In(OH)3 suspension, which was synthesized by improved soft template methods. The morphology of the In...
Treatment with human umbilical cord-derived mesenchymal stem cells for COVID-19 patients with lung damage: a randomised, double-blind, placebo-controlled phase 2 trial
AbstractBACKGROUNDTreatment of severe Corona Virus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data.METHODSIn this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test, maximum vital capaci…
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
Use of simulation-based learning among perioperative nurses and students: A scoping review.
Abstract Objectives Simulation-based learning has been extensively explored, especially in baccalaureate nursing programmes. Recently, simulation-based learning has been introduced in perioperative nursing. The aim of this scoping review is to investigate work published on the use of simulation-based learning in the field of perioperative nursing. Design and data sources A scoping review was conducted using the methodological framework of Arksey and O'Malley to identify a broad range of relevant literature, regardless of study design. A comprehensive and systematic search was performed using Medline, CINAHL, Eric, Svemed+, PsychINFO and Embase in May 2016 and then was updated in February 20…
The impact of Nordic walking on bone properties in postmenopausal women with pre-diabetes and non-alcohol fatty liver disease
This study investigated the impact of Nordic walking on bone properties in postmenopausal women with pre-diabetes and non-alcohol fatty liver disease (NAFLD). A total of 63 eligible women randomly participated in the Nordic walking training (AEx, n = 33), or maintained their daily lifestyle (Con, n = 30) during intervention. Bone mineral content (BMC) and density (BMD) of whole body (WB), total femur (TF), femoral neck (FN), and lumbar spine (L2-4) were assessed by dual-energy X-ray absorptiometry. Serum osteocalcin, pentosidine, receptor activator of nuclear factor kappa-B ligand (RANKL) levels were analyzed by ELISA assay. After an 8.6-month intervention, the AEx group maintained their BM…
Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up.
Water adsorption and capillary bridge formation within a layer of SiO2-nanoparticles were studied in situ by means of a combination of quartz crystal microbalance (QCM-D) with dissipation analysis and Fourier transformation infrared reflection absorption spectroscopy (FT-IRRAS). FT-IR data were employed to distinguish the “ice-like” and “liquid-like” contributions and to support the analysis of the QCM-D data concerning mass change and dissipation. Combined measurements show that for SiO2-nanoparticles with a diameter of about 250 nm, the formation of two adsorbed monolayers of water as well as bulk water leads to a rather linear increase in the dissipation for relative humidity values of u…
The DArk Matter Particle Explorer mission
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Application of silicon-based camera for measurement of non-homogeneous thermal field on realistic specimen surface
Abstract The high-cost low-resolution infrared cameras operating in middle infrared spectral ranges are widely used to detect the thermal fields. In this study, a low-cost high-resolution silicon-based sensor camera operating in near infrared spectral ranges is used to perform the observation of the thermal fields on the realistic steel specimen surface. In near-infrared spectral ranges, a small temperature variation led to a large modification in the sensor illumination, inducing acquired images with over saturation or poor dynamic range of gray levels. To address this problem, an algorithm was used to precisely adjust the exposure time to acquire images with constant gray level whatever t…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…