0000000000041121

AUTHOR

Antonia M. R. Ingrassia

showing 8 related works from this author

The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.

2008

ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodel…

Poly Adenosine Diphosphate RiboseImmunoprecipitationQH301-705.5Poly ADP ribose polymeraseATPaseBlotting WesternBiochemistryChromosomesGeneral Biochemistry Genetics and Molecular BiologySettore BIO/10 - BiochimicaAnimalsDrosophila ProteinsImmunoprecipitationNucleosomeBiology (General)Transcription factorIn Situ Hybridization FluorescencePolymeraseAdenosine TriphosphatasesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceGenetics and GenomicsPARP ISWI Poly(ADP)ribosylation Chromatin remodellingCell BiologyChromatinISWI PARPNucleosomesChromatinSettore BIO/18 - GeneticaDrosophila melanogasterBiochemistrybiology.proteinPoly(ADP-ribose) PolymerasesGeneral Agricultural and Biological SciencesFunction (biology)Transcription FactorsResearch ArticlePLoS Biology
researchProduct

ISWI ATP-dependent remodeling of nucleoplasmic ω-speckles in the brain of Drosophila melanogaster.

2017

Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to the RNA-binding proteins family. They are involved in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs. These proteins participate in every step of mRNA cycle, such as mRNA export, localization, translation, stability and alternative splicing. At least 14 major hnRNPs, which have structural and functional homologues in mammals, are expressed in Drosophila melanogaster. Until now, six of these hnRNPs are known to be nucleus-localized and associated with the long non-coding RNA (lncRNA) heat shock responsive ω (hsrω) in the omega speckle compartments (ω-speckles). The chromatin remodeler ISWI is the catalytic subunit …

0301 basic medicineTranscription GeneticBiologyHeterogeneous ribonucleoprotein particleHeterogeneous-Nuclear RibonucleoproteinsNuclear body03 medical and health scienceslncRNAAdenosine TriphosphateChromatin remodelersGene expressionGeneticsOmega speckleAnimalsMolecular BiologyGeneticsAdenosine TriphosphatasesCell NucleusAlternative splicingChromatin remodelers; hnRNPs; lncRNA; Nuclear body; Omega speckles; Molecular Biology; GeneticsRNABrainTranslation (biology)biology.organism_classificationChromatin Assembly and DisassemblyhnRNPsChromatinCell biology030104 developmental biologyDrosophila melanogasterGene Expression RegulationOmega specklesDrosophila melanogasterTranscription FactorsJournal of genetics and genomics = Yi chuan xue bao
researchProduct

The ISWI chromatin remodeler organizes the hsrω ncRNA-containing omega speckle nuclear compartments.

2011

The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their assoc…

MaleCancer ResearchRNA Untranslatedlcsh:QH426-470Gene ExpressionFluorescent Antibody TechniqueRNA-binding proteinBiologyEyeHeterogeneous ribonucleoprotein particleChromosomesHeterogeneous-Nuclear RibonucleoproteinsChromatin remodelingMolecular GeneticsGeneticsmedicineAnimalsDrosophila ProteinsOmega speckleBiologyMolecular BiologyTranscription factorAllelesGenetics (clinical)Ecology Evolution Behavior and SystematicsAdenosine TriphosphatasesCell NucleusGeneticsRNA-Binding ProteinsEpistasis GeneticChromatin Assembly and DisassemblyNon-coding RNAChromatinCell biologyCell nucleuslcsh:GeneticsPhenotypemedicine.anatomical_structureTandem Repeat SequencesChromatin remodeling non coding RNALarvaEpigeneticsDrosophilaRNA InterferenceResearch ArticleTranscription FactorsPLoS Genetics
researchProduct

The nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors

2010

Abstract ISWI is an evolutionarily conserved ATP-dependent chromatin remodeling factor playing central roles in DNA replication, RNA transcription, and chromosome organization. The variety of biological functions dependent on ISWI suggests that its activity could be highly regulated. Our group has previously isolated and characterized new cellular activities that positively regulate ISWI in Drosophila melanogaster. To identify factors that antagonize ISWI activity we developed a novel in vivo eye-based assay to screen for genetic suppressors of ISWI. Our screen revealed that ISWI interacts with an evolutionarily conserved network of cellular and nuclear factors that escaped previous genetic…

Chromatin Remodeling FactorInvestigationsBiologyEyemedicine.disease_causeConserved sequenceEvolution MolecularGeneticsmedicineAnimalsDrosophila ProteinsNucleosomeFluorometryGenetic TestingGenes SuppressorTranscription factorConserved SequenceAdenosine TriphosphatasesGeneticsMutationCell CycleDNA replicationbiology.organism_classificationNucleosomesChromatinDrosophila melanogasterPhenotypeMutationBiological AssayDrosophila melanogasterchromatin drosophila ISWIProtein BindingTranscription Factors
researchProduct

The histone deacetylase Rpd3 regulates the heterochromatin structure of Drosophila telomeres

2011

Telomeres are specialized structures at the end of eukaryotic chromosomes that are required to preserve genome integrity, chromosome stability and nuclear architecture. Telomere maintenance and function are established epigenetically in several eukaryotes. However, the exact chromatin enzymatic modifications regulating telomere homeostasis are poorly understood. In Drosophila melanogaster, telomere length and stability are maintained through the retrotransposition of specialized telomeric sequences and by the specific loading of protecting capping proteins, respectively. Here, we show that the loss of the essential and evolutionarily conserved histone deacetylase Rpd3, the homolog of mammal…

Telomere-binding proteinGeneticsEpigenomicsMaleHistone deacetylase 5Histone deacetylase 2HDAC11Histone Deacetylase 1Cell BiologyBiologyTelomereHistone H4Telomere HomeostasisDrosophila melanogasterHeterochromatinHistone H2Ahistone deacetylaseHistone codeAnimalsDrosophila Proteinsanimals; article; chromosome aberration; chromosome structure; drosophila; drosophila melanogaster; drosophila proteins; enzyme activity; epigenetics; epigenomics; eukaryota; heterochromatin; histone acetylation; histone deacetylase 1; histone deacetylase rpd 3; histone methylation; male; mammalia; nonhuman; polytene chromosome; priority journal; regulatory mechanism; telomere; unclassified drugPolytene Chromosomes
researchProduct

Trans-Reactivation: A New Epigenetic Phenomenon Underlying Transcriptional Reactivation of Silenced Genes

2015

In order to study the role played by cellular RNA pools produced by homologous genomic loci in defining the transcriptional state of a silenced gene, we tested the effect of non-functional alleles of the white gene in the presence of a functional copy of white, silenced by heterochromatin. We found that non-functional alleles of white, unable to produce a coding transcript, could reactivate in trans the expression of a wild type copy of the same gene silenced by heterochromatin. This new epigenetic phenomenon of transcriptional trans-reactivation is heritable, relies on the presence of homologous RNA’s and is affected by mutations in genes involved in post-transcriptional gene silencing. Ou…

MaleCancer ResearchPEV white Trans-reactivation Epigenetics Gynogenesis ncRNAsRNA Untranslatedlcsh:QH426-470Transcription GeneticHeterochromatinSettore BIO/11 - Biologia MolecolareGenes InsectBiologySettore MED/13 - EndocrinologiaRNA interferenceSettore BIO/10 - BiochimicaHeterochromatinGene clusterGene expressionGeneticsGene silencingAnimalsDrosophila ProteinsEpigeneticsCompound Eye ArthropodEye ProteinsMolecular BiologyGeneGenetics (clinical)Ecology Evolution Behavior and SystematicsAllelesGeneticsEye ColorRNAlcsh:GeneticsSettore BIO/18 - GeneticaDrosophila melanogasterATP-Binding Cassette TransportersFemaleRNA InterferenceResearch ArticlePLoS Genetics
researchProduct

Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI

2011

The evolutionarily conserved ATP-dependent nucleosome remodelling factor ISWI can space nucleosomes affecting a variety of nuclear processes. In Drosophila, loss of ISWI leads to global transcriptional defects and to dramatic alterations in higher-order chromatin structure, especially on the male X chromosome. In order to understand if chromatin condensation and gene expression defects, observed in ISWI mutants, are directly correlated with ISWI nucleosome spacing activity, we conducted a genome-wide survey of ISWI binding and nucleosome positioning in wild-type and ISWI mutant chromatin. Our analysis revealed that ISWI binds both genic and intergenic regions. Remarkably, we found that ISWI…

GeneticsRegulation of gene expressionGeneral Immunology and MicrobiologyGeneral NeuroscienceChromatin bindingBiologyDNA-binding proteinGeneral Biochemistry Genetics and Molecular BiologyChromatinProphaseNucleosomeMolecular BiologyTranscription factorChromatin immunoprecipitationThe EMBO Journal
researchProduct

Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43

2018

Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was coll…

0301 basic medicineCytoplasmCytoplasmic inclusionFluorescent Antibody TechniqueProtein aggregationHeterogeneous ribonucleoprotein particleHeterogeneous-Nuclear Ribonucleoproteinslcsh:Chemistry0302 clinical medicineDrosophila Proteinsneurodegenerative diseasesnuclear bodylcsh:QH301-705.5SpectroscopyGeneral MedicinehnRNPsComputer Science ApplicationsCell biologyChromatinTransport proteinDNA-Binding ProteinsProtein Transportmedicine.anatomical_structureDrosophilaDrosophila ProteinProtein BindingImitation SWIBiologyCatalysisArticleInorganic Chemistryomega speckles03 medical and health sciencesmedicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyGenetic Association StudiesCell NucleusOrganic Chemistryta1182Chromatin Assembly and DisassemblyCell nucleus030104 developmental biologylcsh:Biology (General)lcsh:QD1-999gene expression<i>Drosophila</i>; nuclear body; omega speckles; dTDP-43; hnRNPs; omega speckles; neurodegenerative diseases; gene expression; gene regulationdTDP-43gene regulation030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct