A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms
Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.