6533b7cefe1ef96bd1257203

RESEARCH PRODUCT

A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms

Rory BiggsGiovanni Falcone

subject

Discrete mathematicsPure mathematicsOscillator algebra010102 general mathematicsUniversal enveloping algebra010103 numerical & computational mathematics01 natural sciencesAffine Lie algebraLie conformal algebraGraded Lie algebraNilpotent Lie algebraComputational Theory and MathematicsLie algebraCompact Lie algebraSettore MAT/03 - GeometriaGeometry and Topology0101 mathematicsCompact derivationGeneralized Kac–Moody algebraAnalysisMathematics

description

Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.

https://doi.org/10.1016/j.difgeo.2017.04.009