0000000000042608

AUTHOR

Tetsuya Sato

Synthesis and detection of a seaborgium carbonyl complex

A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO) 6 was the most likely structural formula. Science , this issue p. 1491 ; see also p. 14…

research product

Chemical studies of Fl (element 114): Heaviest chemically studied element

research product

Extraction behavior of rutherfordium into tributylphosphate from hydrochloric acid

The extraction behavior of rutherfordium (Rf) into tributylphosphate (TBP) from hydrochloric acid (HCl) has been studied together with those of the lighter group-4 elements Zr and Hf. The extractability of261Rf,169Hf, and85Zr into TBP was investigated under identical conditions in 7.2–8.0 M HCl by on-line reversed-phase extraction chromatography. The percent extractions of Rf, Hf, and Zr into the TBP resin increase steeply with increasing HCl concentration, and the order of extraction is Zr > Hf ≈ Rf. By considering the order of chloride complexation among these elements, it is suggested that the stability of the TBP complex of Rf tetrachloride is lower than those of Zr and Hf.

research product

First ionization potential of the heaviest actinide lawrencium, element 103

The first ionization potential (IP1 ) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP 1 value is 4.9630.08 0.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s 2 5f 14 7p 1 1/2 , which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens t…

research product

First Ionization Potentials of Fm, Md, No, and Lr

We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…

research product

Anionic Fluoro Complex of Element 105, Db

We report on the characteristic anion-exchange behavior of the superheavy element dubnium (Db) with atomic number Z=105 in HF/HNO3 solution at the fluoride ion concentration [F−]=0.003 M. The resul...

research product

Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6

Abstract Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By in…

research product

Actinides and Transactinides

research product

First successful ionization of Lr (Z = 103) by a surface-ionization technique.

We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI2 gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s (256)Lr produced in the (249)Cf + (11)B reaction.

research product

Measurement of the Md3+/Md2+ Reduction Potential Studied with Flow Electrolytic Chromatography

The reduction behavior of mendelevium (Md) was studied using a flow electrolytic chromatography apparatus. By application of the appropriate potentials on the chromatography column, the more stable Md(3+) is reduced to Md(2+). The reduction potential of the Md(3+) + e(-) → Md(2+) couple was determined to be -0.16 ± 0.05 V versus a normal hydrogen electrode.

research product

Measurement of the first ionization potential of lawrencium (element 103)

Lawrencium, with atomic number 103, has an isotope with a half-life of 27 seconds; even so, its first ionization potential has now been measured on an atom-at-a-time scale and agrees well with state-of-the-art theoretical calculations that include relativistic effects. The most dramatic modern revision of Mendeleev's periodic table of elements came in 1944 when Glenn T. Seaborg placed a new series of elements, the actinides (atomic numbers 89–103), below the lanthanides. In this issue of Nature, Yuichiro Nagame and colleagues report the first measurement of one of the basic atomic properties of element 103 (lawrencium), namely its first ionization potential. Lawrencium is only accessible vi…

research product

Hexafluoro complex of rutherfordium in mixed HF/HNO3 solutions

Formation of anionic fluoride-complexes of element 104, rutherfordium, produced in the 248 Cm( 18 O, 5n) 261 Rf reaction was studied by anion-exchange on an atom-at-a-time scale. It was found that the hexafluoro complex of Rf, [RfF 6 ] 2- , was formed in the studied fluoride ion concentrations of 0.0005-0.013 M. Formation of [RfF 6 ] 2- was significantly different from that of the homologues Zr and Hf, [ZrF 6 ] 2- and [HfF 6 ] 2- ; the evaluated formation constant of [RfF 6 ] 2- is at least one-order of magnitude smaller than those of [ZrF 6 ] 2- and [HfF 6 ] 2- .

research product

Extraction Chromatographic Behavior of Rf, Zr, and Hf in HCl Solution with Styrenedivinylbenzene Copolymer Resin Modified by TOPO (trioctylphosphine oxide)

It is of great interest to study chemical properties of the transactinide elements with atomic numbers (Z) ≥ 104. One of the most important subjects is to establish the position of the elements at the extreme end of the periodic table. To this end we perform studies of chemical properties of these transactinides and compare them with those of their lighter homologues and with the ones expected from extrapolations in the periodic table. So far, chromatographic studies of the transactinides have provided experimental proof of placing rutherfordium (Rf, Z = 104) through hassium (Hs, Z = 108) into groups 4 to 8, respectively. 1-10 Quite recently, copernicium (Cn, Z = 112) has been shown to be a…

research product

Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions

Abstract The formation of carbonyl complexes using atom-at-a-time quantities of short-lived transition metals from fusion and fission reactions was reported in 2012. Numerous studies focussing on this chemical system, which is also applicable for the superheavy elements followed. We report on a novel two-chamber approach for the synthesis of such complexes that allows spatial decoupling of thermalization and gas-phase carbonyl complex synthesis. Neutron induced fission on 235U and spontaneous fission of 248Cm were employed for the production of the fission products. These were stopped inside a gas volume behind the target and flushed with an inert-gas flow into a second chamber. This was fl…

research product

TASCAを用いたCn, Nh, Fl化学実験のためのHg, Tl, PbのSiO2及びAu表面に対するオンライン化学吸着研究

Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO$_{2}$ and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO$_{2}$ or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO$_{2}$ surface at room temperature. On the other hand, the Hg did no…

research product