0000000000042611
AUTHOR
H. Haba
Synthesis and detection of a seaborgium carbonyl complex
A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO) 6 was the most likely structural formula. Science , this issue p. 1491 ; see also p. 14…
First Study on Nihonium (Nh, Element 113) Chemistry at TASCA
Frontiers in Chemistry 9, 753738 (2021). doi:10.3389/fchem.2021.753738
Complex chemistry with complex compounds
In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO)6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of re…
Production Cross Sections of 261Rf and 262Db in Bombardments of 248Cm with 18O and 19F Ions
Chemical studies on rutherfordium (Rf) at JAERI
SummaryChemical studies on element 104, rutherfordium (Rf), at JAERI (Japan Atomic Energy Research Institute) are reviewed. The transactinide nuclide261Rf has been produced in the reaction248Cm(18O, 5n) at the JAERI tandem accelerator with the production cross section of about 13 nb. On-line anion-exchange experiments on Rf together with the lighter homologues, group-4 elements Zr and Hf, in acidic solutions have been conducted with a rapid ion-exchange separation apparatus. From the systematic study of the anion-exchange behavior of Rf, it has been found that the properties of Rf in HCl and HNO3solutions are quite similar to those of Zr and Hf, definitely confirming that Rf is a member of …
Anion-exchange Behavior of Rf in HCl and HNO3 Solutions
H. Haba,∗,a K. Tsukada,a M. Asai,a S. Goto,a,b A. Toyoshima,a,c I. Nishinaka,a K. Akiyama,a M. Hirata,a S. Ichikawa,a Y. Nagame,a Y. Shoji,c M. Shigekawa,c T. Koike,c M. Iwasaki,c A. Shinohara,c T. Kaneko,b T. Maruyama,b S. Ono,b H. Kudo,b Y. Oura,d K. Sueki,d H. Nakahara,a,d M. Sakama,e A. Yokoyama,f J. V. Kratz,g M. Schadel,h and W. Bruchleh Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 3191195, Japan Department of Chemistry, Faculty of Science, Niigata University, Niigata-shi, Niigata 950-2181, Japan Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka-shi, Osaka 5600043, Japan Department of Chemistry, Graduate Sc…
On the adsorption and reactivity of element 114, flerovium
Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly v…
Adsorption of Db and its homologues Nb and Ta, and the pseudo-homologue Pa on anion-exchange resin in HF solution
Anion-exchange chromatography of element 105, dubnim (Db), produced in the 206 Cm( 19 F, 5n) 262 Db reaction is investigated together with the homologues Nb and Ta, and the pseudo-homologue Pa in 13.9 M hydrofluoric acid (HF) solution. The distribution coefficient (K d ) of Db on an anion-exchange resin is successfully determined by running cycles of 1702 chromatographic column separations. The result clearly indicates that the adsorption of Db on the resin is significantly different from that of the homologues and that the adsorption of anionic fluoro complexes of these elements decreases in the sequence of Ta ≈ Nb > Db > Pa.
Hexafluoro complex of rutherfordium in mixed HF/HNO3 solutions
Formation of anionic fluoride-complexes of element 104, rutherfordium, produced in the 248 Cm( 18 O, 5n) 261 Rf reaction was studied by anion-exchange on an atom-at-a-time scale. It was found that the hexafluoro complex of Rf, [RfF 6 ] 2- , was formed in the studied fluoride ion concentrations of 0.0005-0.013 M. Formation of [RfF 6 ] 2- was significantly different from that of the homologues Zr and Hf, [ZrF 6 ] 2- and [HfF 6 ] 2- ; the evaluated formation constant of [RfF 6 ] 2- is at least one-order of magnitude smaller than those of [ZrF 6 ] 2- and [HfF 6 ] 2- .
Extraction Chromatographic Behavior of Rf, Zr, and Hf in HCl Solution with Styrenedivinylbenzene Copolymer Resin Modified by TOPO (trioctylphosphine oxide)
It is of great interest to study chemical properties of the transactinide elements with atomic numbers (Z) ≥ 104. One of the most important subjects is to establish the position of the elements at the extreme end of the periodic table. To this end we perform studies of chemical properties of these transactinides and compare them with those of their lighter homologues and with the ones expected from extrapolations in the periodic table. So far, chromatographic studies of the transactinides have provided experimental proof of placing rutherfordium (Rf, Z = 104) through hassium (Hs, Z = 108) into groups 4 to 8, respectively. 1-10 Quite recently, copernicium (Cn, Z = 112) has been shown to be a…