0000000000042622

AUTHOR

Y. Kudou

showing 4 related works from this author

Synthesis and detection of a seaborgium carbonyl complex

2014

A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO) 6 was the most likely structural formula. Science , this issue p. 1491 ; see also p. 14…

MultidisciplinaryStereochemistrychemistry.chemical_elementStructural formula010402 general chemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryTransition metalCHEMISTRYSeaborgium0103 physical sciencesTRANSITION-METALELEMENTSPhysical chemistrySG(CO)(6)010306 general physicsCarbonHeliumCarbon monoxideSCIENCE
researchProduct

Complex chemistry with complex compounds

2016

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO)6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of re…

PhysicsQC1-999Transactinide elementchemistry.chemical_elementTungsten010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences0104 chemical sciencesMetalchemistryGroup (periodic table)Computational chemistryMolybdenumChemical physicsvisual_artIntramolecular forceSeaborgium540 ChemistryAtomvisual_art.visual_art_medium570 Life sciences; biologyEPJ Web of Conferences
researchProduct

Anionic Fluoro Complex of Element 105, Db

2009

We report on the characteristic anion-exchange behavior of the superheavy element dubnium (Db) with atomic number Z=105 in HF/HNO3 solution at the fluoride ion concentration [F−]=0.003 M. The resul...

Dubniumchemistry.chemical_compoundChemistryStereochemistryPhysical chemistrychemistry.chemical_elementGeneral ChemistryAtomic numberFluorideIonChemistry Letters
researchProduct

Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6

2015

Abstract Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By in…

Inorganic chemistryMetal carbonyl02 engineering and technology010402 general chemistry01 natural sciences7. Clean energythermal stability540 ChemistryseaborgiumThermal stabilityNuclideGas compositionPhysical and Theoretical Chemistrycarbonyl complexegroup 6ChemistrytransactinideTransition metals021001 nanoscience & nanotechnologyDecompositionBond-dissociation energy0104 chemical sciencesVolumetric flow rateYield (chemistry)570 Life sciences; biologyPhysical chemistry0210 nano-technology
researchProduct