0000000000043229
AUTHOR
Salvatore Fisichella
Protective Effects of L- and D-Carnosine on R-Crystallin Amyloid Fibril Formation: Implications for Cataract Disease
Mildly denaturing conditions induce bovine ?-crystallin, the major structural lens protein, to self-assemble into fibrillar structures in vitro. The natural dipeptide L-carnosine has been shown to have potential protective and therapeutic significance in many diseases. Carnosine derivatives have been proposed as potent agents for ophthalmic therapies of senile cataracts and diabetic ocular complications. Here we report the inhibitory effect induced by the peptide (L- and D-enantiomeric form) on ?-crystallin fibrillation and the almost complete restoration of the chaperone activity lost after denaturant and/or heat stress. Scanning force microscopy (SFM), thioflavin T, and a turbidimetry ass…
Carnosine inhibits amyloid fibril formation of alpha crystallin under destabilizing conditions
Trehalose effects on α-crystallin aggregates
alpha-Crystallin in its native state is a large, heterogeneous, low-molecular weight (LMW) aggregate that under certain conditions may progressively became part of insoluble high-molecular weight (HMW) systems. These systems are supposed to play a relevant role in eye lens opacification and vision impairment. In this paper, we report the effects of trehalose on alpha-crystallin aggregates. The role of trehalose in alpha-crystallin stress tolerance, chaperone activity and thermal stability is studied. The results show that trehalose stabilizes the alpha-crystallin native structure, inhibits alpha-crystallin aggregation, and disaggregates preformed LMW systems not affecting its chaperone acti…
The fragmentation of 5- and 3-substituted thiophene-2-carboxamides under electron impact
The 70 eV electron impact mass spectra of twelve 5- and 3-substituted thiophene-2-carboxamides are discussed with the aid of exact mass measurements and labelling experiments. All mass spectra exhibit pronounced molecular ions. Some isomeric 5- and 3-substituted title compounds can be differentiated by mass spectrometry. The fragmentation is influenced by a strong ‘ortho-effect’ which activates the NH3 elimination. In the other cases the most important fragmentation is NH2˙ loss, followed by CO elimination.