0000000000045136

AUTHOR

D. A. Nesterenko

Direct determination of the atomic mass difference of the pairs As 76 − Se 76 and Tb 155 − Gd 155 rules out As 76 and Tb 155 as possible candidates for electron (anti)neutrino mass measurements

research product

Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F

We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…

research product

Direct determination of the excitation energy of the quasistable isomer 180mTa

180mTa is a naturally abundant quasistable nuclide and the longest-lived nuclear isomer known to date. It is of interest, among others, for the search for dark matter, for the development of a γ laser, and for astrophysics. So far, its excitation energy has not been measured directly but has been based on an evaluation of available nuclear reaction data. We have determined the excitation energy of this isomer with high accuracy using the Penning-trap mass spectrometer JYFLTRAP. The determined mass difference between the ground and isomeric states of 180Ta yields an excitation energy of 76.79(55) keV for 180mTa. This is the first direct measurement of the excitation energy and provides a bet…

research product

Observation of an ultralow- Q -value electron-capture channel decaying to As75 via a high-precision mass measurement

research product

Measurement of the 2+→0+ ground-state transition in the β decay of 20F

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product

β - and γ -spectroscopy study of Pd119 and Ag119

research product

Observation of an ultralow-Q-value electron-capture channel decaying to 75As via a high-precision mass measurement

A precise determination of the atomic mass of 75As has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. The mass excess is measured to be −73035.519(42)keV/c2, which is a factor of 21 more precise and 1.3(9)keV/c2 lower than the adopted value in the newest Atomic Mass Evaluation (AME2020). This value has been used to determine the ground-state–to–ground-state electron-capture decay Q value of 75Se and β− decay Q value of 75Ge, which are derived to be 866.041(81) keV and 1178.561(65) keV, respectively. Using the nuclear energy-level data of 860.00(40) keV, 865.40(50) keV (final states of electron capture), and 1172.00(60) keV (final state of β− decay) for the exc…

research product

Direct measurement of the mass difference of 72As-72Ge rules out 72As as a promising β-decay candidate to determine the neutrino mass

Preprint of paper published on Physical Review C We report the first direct determination of the ground-state to ground-state electron-capture Q-value for the 72As to 72Ge decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The Q-value was measured to be 4343.596(75) keV, which is more than a 50-fold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new Qvalue was found to be 12.4(40) keV (3.1 σ) lower. With the significant reduction of the uncertainty of the ground-state to ground-state Q-value value combined with the level scheme of 72Ge from γ-ray spectro…

research product

High-precision Q-value measurement and nuclear matrix element calculations for the double-β decay of 98Mo

The 98Mo double-beta decay Q-value has been measured, and the corresponding nuclear matrix elements of neutrinoless double-beta (0νββ) decay and the standard two-neutrino double-beta (2νββ) decay have been provided by nuclear theory. The double-beta decay Q-value has been determined as Qββ=113.668(68) keV using the JYFLTRAP Penning trap mass spectrometer. It is in agreement with the literature value, Qββ=109(6) keV, but almost 90 times more precise. Based on the measured Q-value, precise phase-space factors for 2νββ decay and 0νββ decay, needed in the half-life predictions, have been calculated. Furthermore, the involved nuclear matrix elements have been computed in the proton–neutron quasi…

research product

Precision mass measurements of Fe 67 and Co 69 , 70 : Nuclear structure toward N = 40 and impact on r -process reaction rates

research product

β- and γ-spectroscopy study of 119Pd and 119Ag

Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …

research product

Direct determination of the atomic mass difference of the pairs 76As−76Se and 155Tb−155Gd rules out 76As and 155 Tb as possible candidates for electron (anti)neutrino mass measurements

The first direct determination of the ground-state–to–ground-state Q values of the β− decay 76As→76Se and the electron-capture decay 155Tb→155Gd was performed utilizing the double Penning trap mass spectrometer JYFLTRAP. By measuring the atomic mass difference of the decay pairs via the phase-imaging ion-cyclotron-resonance technique, the Q values of 76As→76Se and 155Tb→155Gd were determined to be 2959.265(74) keV and 814.94(18) keV, respectively. The precision was increased relative to earlier measurements by factors of 12 and 57, respectively. The new Q values are 1.33 keV and 5 keV lower compared to the values adopted in the most recent Atomic Mass Evaluation 2020. With the newly determi…

research product

High-precision $Q$-value measurement confirms the potential of $^{135}$Cs for antineutrino-mass detection

The ground-state-to-ground-state $\beta$-decay $Q$-value of $^{135}\textrm{Cs}(7/2^+)\to\,^{135}\textrm{Ba}(3/2^+)$ was directly measured for the first time utilizing the Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique at the JYFLTRAP Penning-trap setup. It is the first direct determination of this $Q$-value and its value of 268.66(30)\,keV is a factor of three more precise than the currently adopted $Q$-value in the Atomic Mass Evaluation 2016. Moreover, the $Q$-value deduced from the $\beta$-decay endpoint energy has been found to deviate from our result by approximately 6 standard deviations. The measurement confirms that the first-forbidden unique $\beta^-$-decay transition $^{…

research product

Observation of an ultralow- Q -value electron-capture channel decaying to As 75 via a high-precision mass measurement

research product

Odd-odd neutron-rich rhodium isotopes studied with the double Penning trap JYFLTRAP

Precision mass measurements of neutron-rich rhodium isotopes have been performed at the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. We report results on ground- and isomeric-state masses in $^{110,112,114,116,118}$Rh and the very first mass measurement of $^{120}$Rh. The isomeric states were separated and measured for the first time using the phase-imaging ion-cyclotron-resonance (PI-ICR) technique. For $^{112}$Rh, we also report new half-lives for both the ground state and the isomer. The results are compared to theoretical predictions using the BSkG1 mass model and discussed in terms of triaxial deformation.

research product

High-precision Q-value measurement and nuclear matrix element calculations for the double-$$\beta $$ decay of $$^{98}$$Mo

AbstractThe $$^{98}$$ 98 Mo double-beta decay Q-value has been measured, and the corresponding nuclear matrix elements of neutrinoless double-beta ($$0\nu \beta \beta $$ 0 ν β β ) decay and the standard two-neutrino double-beta ($$2\nu \beta \beta $$ 2 ν β β ) decay have been provided by nuclear theory. The double-beta decay Q-value has been determined as $$Q_{\beta \beta }=113.668(68)$$ Q β β = 113.668 ( 68 )  keV using the JYFLTRAP Penning trap mass spectrometer. It is in agreement with the literature value, $$Q_{\beta \beta }=109(6)$$ Q β β = 109 ( 6 )  keV, but almost 90 times more precise. Based on the measured Q-value, precise phase-space factors for $$2\nu \beta \beta $$ 2 ν β β deca…

research product

Excited states in 87Br populated in β decay of 87Se

Excited levels in 87Br, populated in β decay of 87Se, have been studied by means of γ-ray spectroscopy using an array of broad energy Ge detectors. 87Se nuclei were produced by irradiating a natural Th target with 25-MeV protons. Fission products were extracted from the target chamber using the IGISOL technique, then separated on a dipole magnet and Penning trap (JYFLTRAP) setup. The scheme of excited levels of 87Br has been significantly extended. 114 new transitions and 51 new levels were established. β feedings and log(ft) values of levels were determined. The upper limit for β feeding to the ground state of 87Br was determined to be 23(5)%. Ground state spin and parity 5/2− was confirme…

research product

Direct determination of the excitation energy of the quasistable isomer Ta180m

International audience; Ta180m is a naturally abundant quasistable nuclide and the longest-lived nuclear isomer known to date. It is of interest, among others, for the search for dark matter, for the development of a γ laser, and for astrophysics. So far, its excitation energy has not been measured directly but has been based on an evaluation of available nuclear reaction data. We have determined the excitation energy of this isomer with high accuracy using the Penning-trap mass spectrometer JYFLTRAP. The determined mass difference between the ground and isomeric states of Ta180 yields an excitation energy of 76.79(55) keV for Ta180m. This is the first direct measurement of the excitation e…

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F 20

| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…

research product

Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20

research product

Novel Penning-trap techniques reveal isomeric states in $^{128}$In and $^{130}$In for the first time

Isomeric states in $^{128}$In and $^{130}$In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing novel ion manipulation techniques, different states were separated and masses of six beta-decaying states were measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the $15^-$ isomer in $^{128}$Sn has been discovered in $^{128}$In at $1797.6(20)$ keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a $16^+$ spin-trap isomer. In $^{130}$In, the lowest-lying $…

research product

Direct determination of the atomic mass difference of the pairs As76−Se76 and Tb155−Gd155 rules out As76 and Tb155 as possible candidates for electron (anti)neutrino mass measurements

research product

Direct measurement of the mass difference of As 72 − Ge 72 rules out As 72 as a promising β -decay candidate to determine the neutrino mass

research product

β - and γ -spectroscopy study of Pd 119 and Ag 119

research product

Neutrino oscillometry at the next generation neutrino observatory

The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial radioactive sources can be detected within the long length of detector. Sufficiently strong sources of more than 1 MCi activity can be produced at nuclear reactors. Oscillometry will provide a unique tool for precise determination of the mixing parameters for both active and sterile neutrinos within the broad mass region 0.01 - 2 (eV)^2. LENA can be considered as a versatile tool for a careful investigation of neutrino oscillations.

research product

Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates

Accurate mass measurements of neutron-rich iron and cobalt isotopes 67Fe and 69,70Co have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the 69,70Co ground states and the 1/2− isomer in 69Co have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below 68Ni, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in 69Co has been determined for the first time and is compared to lar…

research product

Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products

AbstractTo enhance the production of medium-heavy, neutron-rich nuclei, and to facilitate measurements of independent yields of neutron-induced fission, a proton-to-neutron converter and a dedicated ion guide for neutron-induced fission have been developed for the IGISOL facility at the University of Jyväskylä. The ion guide holds the fissionable targets, and the fission products emerging from the targets are collected in helium gas and transported to the downstream experimental stations. A computer model, based on a combination of MCNPX for modeling the neutron production, the fission code GEF, and GEANT4 for the transport of the fission products, was developed. The model will be used to i…

research product