0000000000046852

AUTHOR

Neus Sabater

FLEX End-to-End Mission Performance Simulator

The FLuorescence EXplorer (FLEX) mission, selected as the European Space Agency's eighth Earth Explorer, aims to globally measure the sun-induced-chlorophyll-fluorescence spectral emission from terrestrial vegetation. In the frame of the FLEX mission, several industrial and scientific studies have analyzed the instrument design, image processing algorithms, or modeling aspects. At the same time, a common tool is needed to address the overall FLEX mission performance by combining all these features. For this reason, an end-to-end mission performance simulator has been developed for the FLEX mission (FLEX-E). This paper describes the FLEX-E software design, which combines the generation of co…

research product

Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging

Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all …

research product

HICO L1 and L2 data processing: Radiometric recalibration, atmospheric correction and retrieval of water quality parameters

The Hyperspectral Imager for the Coastal Ocean (HICO) is an imaging spectrometer designed with a very high signal-to-noise ratio to monitor coastal ocean and inland waters. The processing of Top-Of-Atmosphere radiance data down to surface reflectance is fundamental for the retrieval of water quality products. However, the current HICO processing chain does not provide atmospheric corrected data nor higher-level water quality products. This paper describes the algorithms implemented within an HICO data processing chain that includes image pre-processing, atmospheric correction and the retrieval of water quality parameters. The implemented algorithms have been validated over a set of HICO ima…

research product

HICO level-2 data processing toolbox for the atmospheric correction and the retrieval of water quality parameters

The Hyperspectral Imager for the Coastal Ocean (HICO) is an imaging spectrometer specifically designed to monitor the coastal ocean. The processing of Top-Of-Atmosphere (TOA) radiance data down to surface reflectance is fundamental for the retrieval of water quality products. However, the current HICO processing chain does not provide atmospheric corrected data nor higher-level water quality products. This work describes a toolbox for the atmospheric correction of HICO data and the retrieval of water quality products. The HICO toolbox, consisting on three main modules (image pre-processing, atmospheric correction and retrieval of water quality products), has been used over a set of HICO ima…

research product

Oxygen transmittance correction for solar-induced chlorophyll fluorescence measured on proximal sensing: Application to the NASA-GSFC fusion tower

Since oxygen (O 2 ) absorption of light becomes more pronounced at higher pressure levels, even a few meters distance between the target and the sensor can strongly affect canopy-leaving Solar-Induced chlorophyll Fluorescence (SIF) retrievals. This study was conducted to quantify the consequent error propagation and the impact of ignoring oxygen absorption effects on proximal sensing SIF measurements based on the O 2 -A absorption band with field-acquired and simulated data. It was demonstrated that the uncorrected oxygen transmittance between target and sensor distance of 10 m can lead to SIF relative errors ranging from 66% to higher than 100% when using a Spectral Fitting (SF) technique …

research product

Systematic Assessment of MODTRAN Emulators for Atmospheric Correction

Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number …

research product

Synthetic scene simulator for hyperspectral spaceborne passive optical sensors. Application to ESA's FLEX/sentinel-3 tandem mission

The simulation of synthetic images serve scientists and engineers to study the instrument configuration as well as to develop image processing and retrieval strategies for a sensor in development. Despite synthetic scene simulators have been developed in the past in the frame of satellite missions, their functionality and flexibility to create a user-defined scene is limited by their architecture, design and implementation. This paper introduces the design of a generic scene simulator with the flexibility to generate realistic synthetic scenes by configuration of the surface and atmosphere. Following this generic design, a scene simulator is being developed for the ESA's Earth Explorer 8th …

research product

Gradient-based Automatic Look-Up Table Generator for Atmospheric Radiative Transfer Models

Atmospheric correction of Earth Observation data is one of the most critical steps in the data processing chain of a satellite mission for successful remote sensing applications. Atmospheric Radiative Transfer Models (RTM) inversion methods are typically preferred due to their high accuracy. However, the execution of RTMs on a pixel-per-pixel basis is impractical due to their high computation time, thus large multi-dimensional look-up tables (LUTs) are precomputed for their later interpolation. To further reduce the RTM computation burden and the error in LUT interpolation, we have developed a method to automatically select the minimum and optimal set of nodes to be included in a LUT. We pr…

research product

Atmospheric and Instrumental Effects on the Fluorescence Remote Sensing Retrieval

Accurately disentangling the tiny Solar–Induced Chlorophyll Fluorescence (SIF) from canopy reflected solar irradiance by using passive remote sensing techniques is always challenging. Regardless the scale at which SIF is measured, i.e., proximal sensing, airborne or satellite level; instrumental and atmospheric effects must be accounted for and compensated as part of the SIF retrieval strategy. Regarding the instrumental effects, the use of very high spectral resolution spectrometers makes mandatory an accurate characterization of the Instrument Spectral Response Function (ISRF); and – in the case of imager spectrometers – an accurate characterization of the full instrument response in the …

research product

FLEX/S3 Tandem Mission Performance Assessment: Evolution of the End-to-End Simulator Flex-E

An End-to-end simulator (E2ES) is a tool to evaluate the performance of a satellite mission. Once a mission is approved for operation, E2ES evolves during Phase C/D to become a supporting tool for the development and validation of the ground data processor, as well as for simulating data sets to test the Prototype and Operational Processors. FLEX-E is the E2ES of the FLEX/Sentinel-3 tandem mission, which was selected in 2015 as ESA's eighth Earth Explorer. The FLEX-E evolution implies the consolidation of all the retrieval algorithms (e.g. fluorescence, reflectance, biophysical variables), the implementation of new scientific developments, as well the improvement of the co-registration proc…

research product

Misión FLEX (Fluorescence Explorer): Observación de la fluorescencia por teledetección como nueva técnica de estudio del estado de la vegetación terrestre a escala global

[EN] FLEX (Fluorescence EXplorer) is a candidate for the 8th ESA’s Earth Explorer mission. Is the first space mission specifically designed for the estimation of vegetation fluorescence on a global scale. The mission is proposed to fly in tandem with the future ESA´s Sentinel-3 satellite. It is foreseen that the information obtained by Sentinel-3 will be supplemented with that provided by FLORIS (Fluorescence Imaging Spectrometer) onboard FLEX. FLORIS will measure the radiance between 500 and 800 nm with a bandwidth between 0.1 nm and 2 nm, providing images with a 150 km swath and 300 m pixel size. This information will allow a detailed monitoring of vegetation dynamics, by improving the me…

research product

Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the…

research product

Design of a Generic 3-D Scene Generator for Passive Optical Missions and Its Implementation for the ESA’s FLEX/Sentinel-3 Tandem Mission

During the design phase of a satellite mission, end-to-end mission performance simulator (E2ES) tools allow scientists and engineers evaluating the mission concept, consolidating system technical requirements and analyzing the suitability of the implemented technical solutions and data processing algorithms. The generation of synthetic scenes is one of the core parts of an E2ES, providing scenes (ground truth) as would be observed by satellite instruments and used as reference against simulated retrieved mission products. An appropriate generation of the scene also allows assessing the performance of the ground data processing chain replacing real instrument data before the mission is in or…

research product

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

research product

Statistical Learning for End-to-End Simulations

End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable…

research product

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

research product

Vegetation vulnerability to drought in Spain

[EN] Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegeta…

research product

A sun-induced vegetation fluorescence retrieval method from top of atmosphere radiance for the FLEX/Sentinel-3 TanDEM mission

A new fluorescence retrieval method is proposed to support ESA's 8th Earth Explorer FLuorescence EXplorer/Sentinel-3 (FLEX-S3) candidate tandem mission. FLEX is the first mission specially dedicated to measure the Sun-Induced vegetation chlorophyll fluorescence (SIF) strongly related with the vegetation photosynthetic activity. Most hyperspectral fluorescence retrieval algorithms available in the literature are very sensitive to true reflectance modelization and/or they assume the atmospheric status as known. The proposed algorithm delivers the retrieval of full fluorescence spectrum at canopy level by using only Top Of Atmosphere (TOA) radiances from S3 and FLEX as input. Once the spatial …

research product

A fluorescence retrieval method for the flex sentinel-3 tandem mission

A new fluorescence retrieval method is proposed to support ESA's 8th Earth Explorer Fluorescence EXplorer (FLEX) candidate mission. Most hyperspectral fluorescence retrieval algorithms available in the literature are very sensitive to true reflectance modelization and/or they assume the atmospheric status as known. The proposed algorithm delivers the retrieval of full fluorescence spectrum at canopy level by using only Top Of Atmosphere (TOA) radiances as input. The proposed method starts with (1) the atmospheric correction of TOA radiances, characterizing the state of the atmosphere without assuming any a-priori classification on aerosols models, (2) performing a first estimation of fluore…

research product

Gradient-Based Automatic Lookup Table Generator for Radiative Transfer Models

Physically based radiative transfer models (RTMs) are widely used in Earth observation to understand the radiation processes occurring on the Earth’s surface and their interactions with water, vegetation, and atmosphere. Through continuous improvements, RTMs have increased in accuracy and representativity of complex scenes at expenses of an increase in complexity and computation time, making them impractical in various remote sensing applications. To overcome this limitation, the common practice is to precompute large lookup tables (LUTs) for their later interpolation. To further reduce the RTM computation burden and the error in LUT interpolation, we have developed a method to automaticall…

research product

The flex end-to-end simulator: From concept phase (A/B1) to ground segment and operations (C/D)

ESA's FLEX/Sentinel-3 tandem mission aims at mapping Sun-induced fluorescence (SIF) as a proxy to quantify photosynthetic activity of terrestrial vegetation. Due to the complexity of the mission concept and stringent requirements for the data processing algorithms, ESA developed a Phase A/B1 End-to-End Mission Performance Simulator (E2ES) tool to reproduce the expected mission performance and check the mission and instrument concepts. In the current Phase C/D, the E2ES concept must evolve to consolidate the whole data processing chain, providing an accurate figures of the whole mission error budget and serving as a roadmap for the future development of FLEX Ground Segment. This paper gives …

research product

Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy–Leaving Sun–Induced Chlorophyll Fluorescence

Estimates of Sun–Induced vegetation chlorophyll Fluorescence (SIF) using remote sensing techniques are commonly determined by exploiting solar and/or telluric absorption features. When SIF is retrieved in the strong oxygen (O 2 ) absorption features, atmospheric effects must always be compensated. Whereas correction of atmospheric effects is a standard airborne or satellite data processing step, there is no consensus regarding whether it is required for SIF proximal–sensing measurements nor what is the best strategy to be followed. Thus, by using simulated data, this work provides a comprehensive analysis about how atmospheric effects impact SIF estimations on proximal sensing, regarding: (…

research product

Retrieval of sun-induced fluorescence using advanced spectral fitting methods

Abstract The FLuorescence EXplorer (FLEX) satellite mission, candidate of ESA's 8th Earth Explorer program, is explicitly optimized for detecting the sun-induced fluorescence emitted by plants. It will allow consistent measurements around the O2-B (687 nm) and O2-A (760 nm) bands, related to the red and far-red fluorescence emission peaks respectively, the photochemical reflectance index, and the structural-chemical state variables of the canopy. The sun-induced fluorescence signal, overlapped to the surface reflected radiance, can be accurately retrieved by employing the powerful spectral fitting technique. In this framework, a set of fluorescence retrieval algorithms optimized for FLEX ar…

research product

Red and Far-Red Fluorescence Emission Retrieval from Airborne High-Resolution Spectra Collected by the Hyplant-Fluo Sensor

The contribution presents the development and testing of a fluorescence retrieval scheme based on the ESA's FLuorescence EXplorer mission concept. The algorithm employs on a coupled surface-atmosphere forward model at oxygen absorption bands: i) the atmospheric effect is computed by MODTRAN5; ii) the surface reflectance and fluorescence are modeled by means of the Spectral Fitting approach. The algorithm, previously tested on numerical simulations, was further implemented and optimized to process real observations collected by the FLEX airborne demonstrator HyPlant. The retrieval scheme has been tested on a number of flight lines collected in several locations, different ecosystems types, a…

research product

Emulation as an Accurate Alternative to Interpolation in Sampling Radiative Transfer Codes

Computationally expensive radiative transfer models (RTMs) are widely used to realistically reproduce the light interaction with the earth surface and atmosphere. Because these models take long processing time, the common practice is to first generate a sparse look-up table (LUT) and then make use of interpolation methods to sample the multidimensional LUT input variable space. However, the question arise whether common interpolation methodsperform most accurate. As an alternative to interpolation, this paper proposes to use emulation, i.e., approximating the RTM output by means of the statistical learning. Two experiments were conducted to assess the accuracy in delivering spectral outputs…

research product

Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy

Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written …

research product

Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space

Abstract In the coming years, Earth Observation missions like the FLuorescence EXplorer (FLEX) will acquire the radiance signal from the visible to the near-infrared at a very high spectral resolution, enabling exciting prospects for new insights in satellite-based photosynthetic studies. In this context, the process of de-coupling atmospheric and vegetation-related spectral signatures will become essential to guarantee a reliable estimation of the vegetation photosynthetic activity from space. Dynamic changes related to the vegetation photosynthetic status result in subtle contributions to the top of atmosphere radiance signal, e.g. due to the emission of the solar-induced chlorophyll fluo…

research product

Desarrollo de productos avanzados para la misión SEOSAT/Ingenio

SEOSAT/Ingenio es la futura misión española de observación de la Tierra en el óptico en alta resolución espacial. Mientras que los productos de imagen a Nivel 1, radiancias geo-referenciadas a nivel de sensor, se encuentran en una fase avanzada de desarrollo existiendo para ello un contrato industrial, los productos de Nivel 2 deben ser desarrollados por los propios usuarios. Este hecho limita el uso de las imágenes a la comunidad científica, restringiendo sus posibles aplicaciones fuera de ésta. Así pues, bajo el marco de un proyecto coordinado y motivados por ofrecer productos de Ingenio/SEOSAT de Nivel 2 a disposición de cualquier usuario, se origina y desarrolla este trabajo. En este ar…

research product

Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study

Abstract Progress in imaging spectroscopy technology and data processing can enable derivation of the complete sun-induced chlorophyll fluorescence (SIF) emission spectrum. This opens up opportunities to fully exploit the use of the SIF spectrum as an indicator of photosynthetic activity. Simulations performed with the coupled fluorescence–photosynthesis model SCOPE were used to determine how strongly canopy-leaving SIF can be related to net photosynthesis of the canopy (NPC) for various canopy configurations. Regression analysis between SIF retrievals and NPC values produced the following general findings: (1) individual SIF bands that were most sensitive to NPC were located around the fir…

research product

Alg: a Toolbox for the Generation of Look-Up tables Based on Atmospheric Radiative Transfer Models

Atmospheric radiative transfer models (RTMs) are software tools describing the radiation processes occurring on the Earth’s atmosphere. While the evolution of these tools have achieved better representations of the light-atmosphere interactions, the increase of complexity, interpretability and computation time bears implications towards practical applications in Earth observation. Despite of existing RTM-specific graphical user interfaces, none of these tools allow common streamlining model setup for a wide variety of atmospheric RTMs. In addition, the automatic generation of atmospheric look-up tables (LUTs) can hardly be done with the use of these graphical tools. This paper presents the …

research product