6533b85afe1ef96bd12b95d0
RESEARCH PRODUCT
Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy
Neus SabaterNeus SabaterJanne LevulaAlbert Porcar-castellElizabeth M. MiddletonCaroline NicholT. J. WadeTimo VesalaChristopher MaclellanGuillaume DroletIvan MammarellaJon Athertonsubject
Canopy010504 meteorology & atmospheric sciencesRETRIEVAL0211 other engineering and technologiesEddy covarianceBoreal ecosystemlight-use efficiency (LUE)02 engineering and technologyAtmospheric sciencesPhotochemical Reflectance Index01 natural sciencesNormalized Difference Vegetation Indexseasonal dynamicsPHOTOSYSTEM-IIPHOTOCHEMICAL REFLECTANCE INDEXDiurnal cyclephotosynthetic efficiencySPECTROMETERFIELDWATER-STRESSlcsh:ScienceTEMPERATUREconiferous forest021101 geological & geomatics engineering0105 earth and related environmental sciencessolar-induced chlorophyll fluorescence (SiF); seasonal dynamics; photosynthetic efficiency; proximal remote sensing; coniferous forest; gross primary productivity (GPP); light-use efficiency (LUE); Fraunhofer Line Discriminator (FLD); flux tower4112 Forestrygross primary productivity (GPP)SUN-INDUCED FLUORESCENCEPrimary productionGROSS PRIMARY PRODUCTIONsolar-induced chlorophyll fluorescence (SiF)15. Life on landproximal remote sensing13. Climate actionLIGHT-USE EFFICIENCYRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QFraunhofer Line Discriminator (FLD)flux towerdescription
Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written automated software, from early spring through until autumn in 2011. The optical system was mounted on a tower of 18 m height adjacent to an eddy covariance system, to observe a boreal forest ecosystem dominated by Scots pine. (Pinus sylvestris) A Walz MONITORING-PAM, multi fluorimeter system, was simultaneously mounted within the canopy adjacent to the footprint sampled by the optical system. Following correction of the SiF data for O2 and structural effects, SiF, SiF yield, LUE, the photochemicsl reflectance index (PRI), and the normalized difference vegetation index (NDVI) exhibited a seasonal pattern that followed GPP sampled by the eddy covariance system. Due to the complexities of solar azimuth and zenith angle (SZA) over the season on the SiF signal, correlations between SiF, SiF yield, GPP, and LUE were assessed on SZA <50° and under strictly clear sky conditions. Correlations found, even under these screened scenarios, resulted around ~r2 = 0.3. The diurnal responses of SiF, SiF yield, PAM estimates of effective quantum yield (ΔF/Fm′), and meteorological parameters demonstrated some agreement over the diurnal cycle. The challenges inherent in SiF retrievals in boreal evergreen ecosystems are discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-30 | Remote Sensing; Volume 11; Issue 3; Pages: 273 |