0000000000300126

AUTHOR

Albert Porcar-castell

0000-0003-1357-9982

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF…

research product

Beyond APAR and NPQ: Factors Coupling and Decoupling SIF and GPP Across Scales

The connection between solar-induced fluorescence (SIF) and vegetation gross primary productivity is being widely investigated across spatial, temporal, and biological scales, including: a) studies at the leaf [1], [2], plant canopy [2]–[4] or satellite pixel scale [5], [6], b) temporally with studies spanning from diurnal [7] to seasonal scales [1], [3], [5], and b) biologically with studies covering various plant functional types (PFTs), e.g., crops [4], [7], deciduous [8] or evergreen forests [1], [3], in response to different sources of stress.

research product

Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls

Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (Delta A) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction. Underlying…

research product

Leaf-Level Spectral Fluorescence Measurements : Comparing Methodologies for Broadleaves and Needles

Successful measurements of chlorophyll fluorescence (ChlF) spectral properties (typically in the wavelength range of 650–850 nm) across plant species, environmental conditions, and stress levels are a first step towards establishing a quantitative link between solar-induced chlorophyll fluorescence (SIF), which can only be measured at discrete ChlF spectral bands, and photosynthetic functionality. Despite its importance and significance, the various methodologies for the estimation of leaf-level ChlF spectral properties have not yet been compared, especially when applied to leaves with complex morphology, such as needles. Here we present, to the best of our knowledge, a first comparison of …

research product

Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-in…

research product

Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy–Leaving Sun–Induced Chlorophyll Fluorescence

Estimates of Sun–Induced vegetation chlorophyll Fluorescence (SIF) using remote sensing techniques are commonly determined by exploiting solar and/or telluric absorption features. When SIF is retrieved in the strong oxygen (O 2 ) absorption features, atmospheric effects must always be compensated. Whereas correction of atmospheric effects is a standard airborne or satellite data processing step, there is no consensus regarding whether it is required for SIF proximal–sensing measurements nor what is the best strategy to be followed. Thus, by using simulated data, this work provides a comprehensive analysis about how atmospheric effects impact SIF estimations on proximal sensing, regarding: (…

research product

UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack

International audience; Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperature…

research product

Spatial Variation of Leaf Optical Properties in a Boreal Forest Is Influenced by Species and Light Environment

Leaf Optical Properties (LOPs) convey information relating to temporally dynamic photosynthetic activity and biochemistry. LOPs are also sensitive to variability in anatomically related traits such as Specific Leaf Area (SLA), via the interplay of intra-leaf light scattering and absorption processes. Therefore, variability in such traits, which may demonstrate little plasticity over time, potentially disrupts remote sensing estimates of photosynthesis or biochemistry across space. To help to disentangle the various factors that contribute to the variability of LOPs, we defined baseline variation as variation in LOPs that occurs across space, but not time. Next we hypothesized that there wer…

research product

Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy

Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written …

research product