0000000000046922

AUTHOR

Henri M.p. Siljanen

0000-0002-3197-1438

Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake

In lake ecosystems a major proportion of methane (CH4) emissions originate from the littoral zone, which can have a great spatial variability in hydrology, soil quality and vegetation. Hitherto, spatial heterogeneity and the effects it has on functioning and diversity of methanotrophs in littoral wetlands have been poorly understood. A diagnostic microarray based on the particulate methane monooxygenase gene coupled with geostatistics was used to analyse spatial patterns of methanotrophs in the littoral wetland of a eutrophic boreal lake (Lake Kevaton, Eastern Finland). The wetland had a hydrology gradient with a mean water table varying from −8 to −25 cm. The wettest area, comprising the h…

research product

Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents

Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, reducing NO3− while oxidizing the carbon (C) from woodchips. However, bioreactor age, and changes in the operating conditions or in the microbial community might affect the NO3− removal as well as potentially promote nitrous oxide (N2O) production through either incomplete denitrification or dissimilatory NO3− reduction to ammonium (DNRA). Here, we combined stable isotope approach, amplicon sequencing, and captured metagenomics for studying the potential NO3− removal rates, a…

research product

New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing

Methane (CH4) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the C…

research product