Cubic metamaterial crystal supporting broadband isotropic chiral phonons
Chiral metamaterials can support chiral phonons leading to acoustical activity, the acoustical counterpart of optical activity. However, the properties of early metamaterial designs have been very highly anisotropic, and chiral acoustical phonons occurred only for selected high-symmetry directions. The authors propose a novel chiral metamaterial based on ``twisting'' a truncated octahedron in a simple-cubic unit cell. Not supported by crystal symmetry alone but rather by a tuned degeneracy, chiral phonons and large broadband acoustical activity are obtained for all phonon propagation directions in 3D. This result is notable because even isotropic achiral acoustical phonons are rare for crys…