0000000000049771

AUTHOR

Martins Kokainis

showing 9 related works from this author

Approximation properties of higher degree F-transforms based on B-splines

2015

The paper deals with the F-transform with polynomial components with respect to a generalized fuzzy partition given by B-splines. We investigate approximation properties of the inverse F-transform in this case and prove that using B-splines allows us to improve the quality of approximation of smooth functions.

Equioscillation theoremDiscrete mathematicsPolynomialApproximation theoryBox splineApproximation errorApplied mathematicsInverseSpouge's approximationMinimax approximation algorithmMathematics2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
researchProduct

Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games

2017

We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex $v$, outputs the children of $v$. We construct a quantum algorithm which, given such access to a search tree of depth at most $n$, estimates the size of the tree $T$ within a factor of $1\pm \delta$ in $\tilde{O}(\sqrt{nT})$ steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which exam…

FOS: Computer and information sciencesQuantum PhysicsSpeedupBacktrackingFOS: Physical sciences0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)Directed acyclic graph01 natural sciencesSearch treeCombinatoricsComputer Science - Computational Complexity010201 computation theory & mathematicsSearch algorithm020204 information systemsComputer Science - Data Structures and AlgorithmsTernary search tree0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)Quantum algorithmDepth-first searchQuantum Physics (quant-ph)MathematicsProceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
researchProduct

Quadratic speedup for finding marked vertices by quantum walks

2020

A quantum walk algorithm can detect the presence of a marked vertex on a graph quadratically faster than the corresponding random walk algorithm (Szegedy, FOCS 2004). However, quantum algorithms that actually find a marked element quadratically faster than a classical random walk were only known for the special case when the marked set consists of just a single vertex, or in the case of some specific graphs. We present a new quantum algorithm for finding a marked vertex in any graph, with any set of marked vertices, that is (up to a log factor) quadratically faster than the corresponding classical random walk.

FOS: Computer and information sciencesQuadratic growthQuantum PhysicsQuantum algorithmsSpeedupMarkov chainMarkov chainsProbability (math.PR)FOS: Physical sciencesRandom walkVertex (geometry)CombinatoricsQuadratic equationSearch by random walkQuantum searchComputer Science - Data Structures and AlgorithmsFOS: MathematicsData Structures and Algorithms (cs.DS)Quantum walkQuantum algorithmQuantum Physics (quant-ph)Mathematics - ProbabilityMathematicsQuantum walks
researchProduct

A random-walk benchmark for single-electron circuits

2021

Mesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe. Additionally, contributions of correlated noise, induced environmentally or by memory, are revealed as limits of achievable fidelity by statistical consistency analysis of the full distribution of error counts. Applying this methodology to a high-fidelity implementation of on-dema…

Computer scienceScienceFOS: Physical sciencesGeneral Physics and AstronomyWord error rateQuantum metrology02 engineering and technologyIntegrated circuit01 natural sciencesNoise (electronics)ArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionComputer Science::Hardware ArchitecturelawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectronic devicesQuantum metrology010306 general physicsQuantumQuantum computerQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsQGeneral Chemistry021001 nanoscience & nanotechnologyRandom walkComputerSystemsOrganization_MISCELLANEOUSBenchmark (computing)Quantum Physics (quant-ph)0210 nano-technologyAlgorithmNature Communications
researchProduct

Collocation Method for Linear BVPs via B-spline Based Fuzzy Transform

2018

The paper is devoted to an application of a modified F-transform technique based on B-splines in solving linear boundary value problems via the collocation method. An approximate solution is sought as a composite F-transform of a discrete function (which allows the solution to be compactly stored as the values of this discrete function). We demonstrate the effectiveness of the described technique with numerical examples, compare it with other methods and propose theoretical results on the order of approximation when the fuzzy partition is based on cubic B-splines.

CollocationB-spline010103 numerical & computational mathematics02 engineering and technologyFunction (mathematics)01 natural sciencesFuzzy logicCollocation method0202 electrical engineering electronic engineering information engineeringOrder (group theory)Applied mathematics020201 artificial intelligence & image processingBoundary value problem0101 mathematicsApproximate solutionMathematics
researchProduct

All Classical Adversary Methods Are Equivalent for Total Functions

2017

We show that all known classical adversary lower bounds on randomized query complexity are equivalent for total functions and are equal to the fractional block sensitivity fbs( f ). That includes the Kolmogorov complexity bound of Laplante and Magniez and the earlier relational adversary bound of Aaronson. This equivalence also implies that for total functions, the relational adversary is equivalent to a simpler lower bound, which we call rank-1 relational adversary. For partial functions, we show unbounded separations between fbs( f ) and other adversary bounds, as well as between the adversary bounds themselves. We also show that, for partial functions, fractional block sensitivity canno…

FOS: Computer and information sciencesKolmogorov complexity010102 general mathematicsBlock (permutation group theory)0102 computer and information sciencesFunction (mathematics)Computational Complexity (cs.CC)Adversary01 natural sciencesUpper and lower boundsTheoretical Computer ScienceCombinatoricsComputer Science - Computational ComplexityComputational Theory and Mathematics010201 computation theory & mathematicsPartial functionSensitivity (control systems)0101 mathematicsEquivalence (measure theory)MathematicsACM Transactions on Computation Theory
researchProduct

Modified F-transform Based on B-splines

2018

The aim of this paper is to improve the F-transform technique based on B-splines. A modification of the F-transform of higher degree with respect to fuzzy partitions based on B-splines is done to extend the good approximation properties from the interval where the Ruspini condition is fulfilled to the whole interval under consideration. The effect of the proposed modification is characterized theoretically and illustrated numerically.

0209 industrial biotechnology020901 industrial engineering & automationDegree (graph theory)Approximation error0202 electrical engineering electronic engineering information engineeringExtrapolationApplied mathematicsInterval (graph theory)020201 artificial intelligence & image processing02 engineering and technologyFuzzy logicMathematics
researchProduct

Higher Degree F-transforms Based on B-splines of Two Variables

2016

The paper deals with the higher degree fuzzy transforms (F-transforms with polynomial components) for functions of two variables in the case when two-dimensional generalized fuzzy partition is given by B-splines of two variables. We investigate properties of the direct and inverse F-transform in this case and prove that using B-splines as basic functions of fuzzy partition allows us to improve the quality of approximation.

0209 industrial biotechnologyPolynomialDegree (graph theory)Inverse02 engineering and technologyFuzzy partitionFuzzy logic020901 industrial engineering & automationQuality (physics)Approximation error0202 electrical engineering electronic engineering information engineeringApplied mathematics020201 artificial intelligence & image processingMathematics
researchProduct

Quantum Speedups for Exponential-Time Dynamic Programming Algorithms

2018

In this paper we study quantum algorithms for NP-complete problems whose best classical algorithm is an exponential time application of dynamic programming. We introduce the path in the hypercube problem that models many of these dynamic programming algorithms. In this problem we are asked whether there is a path from $0^n$ to $1^n$ in a given subgraph of the Boolean hypercube, where the edges are all directed from smaller to larger Hamming weight. We give a quantum algorithm that solves path in the hypercube in time $O^*(1.817^n)$. The technique combines Grover's search with computing a partial dynamic programming table. We use this approach to solve a variety of vertex ordering problems o…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Quantum Physics (quant-ph)
researchProduct