6533b7defe1ef96bd12768d4

RESEARCH PRODUCT

A random-walk benchmark for single-electron circuits

Andris AmbainisNiels UbbelohdeDavid ReifertVyacheslavs KashcheyevsMartins Kokainis

subject

Computer scienceScienceFOS: Physical sciencesGeneral Physics and AstronomyWord error rateQuantum metrology02 engineering and technologyIntegrated circuit01 natural sciencesNoise (electronics)ArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionComputer Science::Hardware ArchitecturelawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectronic devicesQuantum metrology010306 general physicsQuantumQuantum computerQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsQGeneral Chemistry021001 nanoscience & nanotechnologyRandom walkComputerSystemsOrganization_MISCELLANEOUSBenchmark (computing)Quantum Physics (quant-ph)0210 nano-technologyAlgorithm

description

Mesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe. Additionally, contributions of correlated noise, induced environmentally or by memory, are revealed as limits of achievable fidelity by statistical consistency analysis of the full distribution of error counts. Applying this methodology to a high-fidelity implementation of on-demand transfer of electrons in quantum dots we are able to utilize the high precision of charge counting to robustly estimate the error rate of the full circuit and its variability due to noise in the environment. As the clock frequency of the circuit is increased, the random walk reveals a memory effect. This benchmark contributes towards a rigorous metrology of quantum circuits.

10.1038/s41467-020-20554-whttps://doaj.org/article/86c79193df4a41e0b420cf1e26db3ece