0000000000051546

AUTHOR

Damiano Padovani

0000-0002-0772-9609

showing 21 related works from this author

Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder

2020

This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…

0209 industrial biotechnologyComputer scienceStiffnessComputingMilieux_LEGALASPECTSOFCOMPUTING02 engineering and technologyLinear actuatorMotion controlSizingCylinder (engine)law.inventionControllabilityHydraulic cylinder020901 industrial engineering & automation020401 chemical engineeringlawControl theoryLinear motionVDP::Teknologi: 500::Maskinfag: 570medicine0204 chemical engineeringmedicine.symptomHydraulic machineryActuator
researchProduct

A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability

2019

Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, c…

0209 industrial biotechnologyControl and OptimizationComputer science020209 energyEnergy Engineering and Power TechnologyComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologySelf-contained cylinderslcsh:TechnologyAutomotive engineeringCylinder (engine)law.invention020901 industrial engineering & automationlawload-holding valves0202 electrical engineering electronic engineering information engineeringCylinderElectrical and Electronic EngineeringHydraulic machineryEngineering (miscellaneous)Renewable Energy Sustainability and the EnvironmentOscillationlcsh:TmodelingSelf-contained cylinders; electro-hydraulic systems; load-holding valves; modelingPower (physics)VDP::Teknologi: 500ActuatorEnergy (signal processing)electro-hydraulic systemsEnergy (miscellaneous)
researchProduct

Enabling Energy Savings in Offshore Mechatronic Systems by using Self-Contained Cylinders

2019

This paper proposes a novel actuation system for an offshore drilling application. It consists of three self-contained electro-hydraulic cylinders that can share and store regenerated energy. The energy saving potential of the proposed solution is analyzed through a multibody system simulation. The self-contained system demonstrates superior energy efficiency compared to the benchmark system representing the state-of-the-art approach used today (i.e., valve-controlled cylinders by means of pressure-compensated directional control valves and counter-balance valves, supplied by a centralized hydraulic power unit). Due to the power on demand capability, the cancellation of the throttling losse…

passive load-holdingComputer scienceMechanical engineeringself-contained electro-hydraulic cylinderoffshore mechatronic systemsLinear actuatorMechatronicslcsh:QA75.5-76.95Computer Science Applicationsenergy savingsControl and Systems EngineeringModeling and Simulationproportional directional control valveSubmarine pipelineElectrification of hydraulicslinear actuatorlcsh:Electronic computers. Computer scienceSoftwareEnergy (signal processing)Modeling, Identification and Control: A Norwegian Research Bulletin
researchProduct

A Novel Solution for the Elimination of Mode Switching in Pump-Controlled Single-Rod Cylinders

2020

This paper concerns the stability issue of pump-controlled single-rod cylinders, known as mode switching. First, a review of the topic is provided. Thereafter, the most recently proposed solution for the elimination of mode switching is investigated and shown to result in unstable behavior under certain operating conditions. A theoretical analysis is provided demonstrating the underlying mechanisms of this behavior. Based on the analysis, a novel control strategy is proposed and investigated numerically. Proper operation and stability are demonstrated for a wide range of operating conditions, including situations under which the most recently proposed solution results in unstable behavior a…

0209 industrial biotechnologyControl and OptimizationMaterials science020209 energy02 engineering and technologyelectrohydraulic valvesStability (probability)020901 industrial engineering & automationlinear actuatorsControl theorylcsh:TK1001-18410202 electrical engineering electronic engineering information engineeringlcsh:TA401-492large inertia loadsLinear actuatorstabilitylcsh:Production of electric energy or power. Powerplants. Central stationsRange (mathematics)VDP::Teknologi: 500single-pump circuitsmode switching instabilityControl and Systems EngineeringoscillationsMode switchinglcsh:Materials of engineering and construction. Mechanics of materialsActuatorpump-controlled systemsActuators
researchProduct

Classification and Review of Pump-Controlled Differential Cylinder Drives

2019

Pump-controlled hydraulic cylinder drives may offer improved energy efficiency, compactness, and plug-and-play installation compared to conventional valve-controlled hydraulic systems and thus have the potential of replacing conventional hydraulic systems as well as electro-mechanical alternatives. Since the late 1980s, research into how to configure the hydraulic circuit of pump-controlled cylinder drives has been ongoing, especially in terms of compensating the uneven flow requirements required by a differential cylinder. Recently, research has also focused on other aspects such as replacing a vented oil tank with a small-volume pressurized accumulator including the consequences of this i…

0209 industrial biotechnologyControl and OptimizationComputer science020209 energyThrottleless hydraulicsEnergy Engineering and Power Technology02 engineering and technologyLinear hydraulic actuationlcsh:TechnologyAutomotive engineering020901 industrial engineering & automationOil tankPump-controlled cylinder drivesDirect-driven hydraulicspump-controlled cylinder drivesThermal0202 electrical engineering electronic engineering information engineeringCylinderElectrical and Electronic EngineeringHydraulic machineryEngineering (miscellaneous)Hydraulic pumpValveless hydraulic driveRenewable Energy Sustainability and the Environmentlcsh:THydraulic circuitdirect-driven hydraulicsAccumulator (energy)VDP::Teknologi: 500Hydraulic cylinderthrottleless hydraulicsVDP::Medisinske Fag: 700::Helsefag: 800linear hydraulic actuationvalveless hydraulic driveEnergy (miscellaneous)Energies
researchProduct

On the Energy Efficiency of Dual Prime Mover Pump-Controlled Hydraulic Cylinders

2019

Abstract This paper concerns the energy efficiency of a special class of pump-controlled hydraulic cylinders utilizing two prime movers. The performance of such circuits has been studied previously motivated by their capability of providing an actuator stiffness similar to that of servo valve-controlled systems. This characteristic may improve performance and robustness in applications requiring feedback control. In this paper, the presence of losses similar to that of fluid throttling, in the sense that they occur even in the absence of component inefficiencies, are demonstrated for such circuits and shown to degrade the overall energy efficiency of the system. The conditions under which s…

Hydraulic cylinderControl theoryComputer scienceRobustness (computer science)medicineStiffnessmedicine.symptomActuatorPrime moverElectronic circuitDual (category theory)Efficient energy useASME/BATH 2019 Symposium on Fluid Power and Motion Control
researchProduct

Downsizing the Electric Motors of Energy-Efficient Self-Contained Electro-Hydraulic Systems by Using Hybrid Technologies

2020

Abstract The ongoing tendency toward the electrification of hydraulic systems, mainly in the form of self-contained solutions, poses design challenges in high-power applications. An electric motor drives positive-displacement machines used to control the motion of the hydraulic actuator (nonhybrid systems encompassing one or two pumps exist in the technical literature). All the power managed by the actuator passes through the electric motor, which leads to often oversized arrangements. These detrimental characteristics are especially pronounced when the power level increases approximately above 35–40 kW. Therefore, this research paper presents and studies a self-contained, electro-hydraulic…

Electric motorDynamic modelsComputer scienceMechanical engineeringMotion controlActuatorElectro hydraulicDisplacement (vector)Energy storageEfficient energy use
researchProduct

Improving the Efficiency and Dynamic Properties of a Flow Control Unit in a Self-Locking Compact Electro-Hydraulic Cylinder Drive

2019

Abstract The introduction of low cost electric motor and drive solutions provides the possibility to design cost competitive compact speed-variable drives as potentially feasible alternatives to conventional valve-controlled solutions. A main drawback in existing self-contained drive technology is the power consumption in stationary load carrying situations. However, the recent introduction of compact self-locking drive topologies with separate forward and return flow lines allow to significantly minimize the power consumption, but introduces another problem. Dependent on the control of the flow device, a continuous, but lower power consumption compared to non-self-locking drive topologies …

Electric motorFlow control (fluid)Computer sciencelawSelf lockingMechanical engineeringElectro hydraulicCylinder (engine)law.invention
researchProduct

A Control Algorithm for Active/Passive Hydraulic Winches Used in Active Heave Compensation

2019

Abstract The most common active heave compensated offshore cranes have hydraulic winch systems. This paper investigates an active/passive hydraulic winch system with variable-displacement motors and variable-displacement pumps. The paper addresses the challenges when the active motors are set with a low displacement. The active motor displacement is shown to have significant impact on the dynamics of the closed loop hydraulic system. The classical control strategy for this type of system do not address these challenges and will in certain situations have significantly reduced performance. Therefor, a new control method is presented that utilize the variable displacement of the pumps and mot…

Control algorithmControl theoryControl equipmentActive heave compensationWinchActive passiveDisplacement (vector)GeologyASME/BATH 2019 Symposium on Fluid Power and Motion Control
researchProduct

Design and Characterization of a Miniature Hydraulic Power Supply for High-Bandwidth Control of Soft Robotics

2020

Soft robotics holds enormous promise for a wide class of applications. However, system controllability, bandwidth, portability, and energy efficiency of soft robot power supplies are often inadequate. Soft robotics desperately needs improved solutions to drive soft actuators either pneumatically or hydraulically. This research paper offers a contribution to bridge this gap. It deals with small-scale power supplies for hydraulically-driven soft robots based on fluidic elastomer actuators in the power range 5-400 W. A design procedure for such power supplies is developed with an emphasis on high-bandwidth control. The performance requirements are established based on a literature survey, and …

Controllabilitybusiness.industryComputer scienceElectrical engineeringSoft roboticsRobotGear pumpHydraulic machineryLiterature surveybusinessDC motorEfficient energy use2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
researchProduct

Exploiting Valve Timing for Pneumatic Energy Savings

2018

This research paper aims at addressing solutions that reduce air consumption in generic pneumatic systems used for pick-and-place operations. The investigation considers different system architectures both with a single control valve and two control valves arranged according to an independent metering configuration. Suitable control strategies are then proposed exploiting multiple timings to shut off the non-proportional switching valve(s). The resulting scenarios are experimentally evaluated on a dedicated test-bed. The main conclusion is that reduction of air consumption up to 73% is possible in comparison to the state-of-the-art layout for the reference application. Numerical simulations…

Valve timingDynamic modelsComputer scienceSystems architectureAutomotive engineeringEnergy (signal processing)BATH/ASME 2018 Symposium on Fluid Power and Motion Control
researchProduct

A Digital Twin for Lift Planning With Offshore Heave Compensated Cranes

2020

Abstract This paper presents a state-of-the-art digital twin of a hydraulic actuated winch that is used for heave compensation in offshore applications. The digital twin is used as part of a larger simulation model that involves all necessary components to perform lift planning and, subsequently, determine the corresponding weather window. The winch simulation model is described and verified by means of full-scale measurements. In addition, a set of acceptance criteria are presented that should be used whenever verifying digital twins of heave compensating winches that are to be used for lift planning.

Acceptance testingComputer scienceLift (data mining)Mechanical EngineeringOcean EngineeringSubmarine pipelineMarine engineeringJournal of Offshore Mechanics and Arctic Engineering
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control

2019

This research paper presents the first part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled actuation system that is typically used in load-carrying applications. The study is carried out on a single-boom crane with focus on the control design and motion performance analysis. First, a model-based design approach is carried out to derive the control parameters for both actuation systems using experimentally validated models. The linear analysis shows that the new drive system has higher gain margin, allowing a considerably more aggressive closed-loop position controller. Several b…

0209 industrial biotechnologyControl and OptimizationSettling timeComputer sciencepassive load-holding020209 energy02 engineering and technologyactive damping020901 industrial engineering & automationlinear actuatorsmodeling and simulationControl theoryPosition (vector)load-carrying applications0202 electrical engineering electronic engineering information engineeringOvershoot (signal)feedback control systemsLinear actuatorMotion controlControl and Systems EngineeringRise timeproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemslinear control designActuators
researchProduct

Study of a Self-Contained Electro-Hydraulic Cylinder Drive

2018

Self-contained electro-hydraulic cylinders that can be powered just by an electrical wire will be popular in the coming years. Combining electrical-drives and hydraulic cylin- ders exploits some excellent properties of these two technologies and enables flexible implementation. To fully benefit from such a drive solution, there is the need to develop electro-hydraulic cylinders capable of operating independently as opposed to standard hydraulic systems that are connected to a central power supply. Therefore, this paper presents a numerical investigation of a self-contained electro-hydraulic cylinder with passive load- holding capability. The corresponding dynamic model is proposed and used …

Computer sciencelawElectrical wireMechanical engineeringComputerApplications_COMPUTERSINOTHERSYSTEMSHydraulic machineryActuatorElectro hydraulicCylinder (engine)law.inventionPower (physics)2018 Global Fluid Power Society PhD Symposium (GFPS)
researchProduct

Adding Active Damping to Energy-Efficient Electro-Hydraulic Systems for Robotic Manipulators — Comparing Pressure and Acceleration Feedback

2020

The growing interest in energy efficiency, plug-and-play commissioning, and reduced maintenance for heavy-duty robotic manipulators directs towards self-contained, electro-hydraulic cylinders. These drives are characterized by extremely low damping that causes unwanted oscillations of the mechanical structure. Adding active damping to this class of energy-efficient architectures is essential. Hence, this paper bridges a literature gap by presenting a systematic comparison grounded on a model-based tuning of both pressure and acceleration feedback. It is shown that both approaches increase the system damping hugely and improve the performance of the linear system. Acceleration feedback shoul…

0209 industrial biotechnologyComputer science020209 energyLinear systemRobot manipulatorPressure feedback02 engineering and technologyElectro hydraulicAcceleration020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringHydraulic machineryEfficient energy use2020 5th International Conference on Robotics and Automation Engineering (ICRAE)
researchProduct

Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verific…

2020

In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance improvement based on a full-scale testing on site with a crane rated to 250 metric tons. Such a crane represents the typical target for the new control method using a combination of active and passive hydraulic actuation on the main winch. The active hydraulic actuation is a hydrostatic transmission with variable-displacement pumps and variable-displacement motors. The new controller employs feedf…

0209 industrial biotechnologyControl and OptimizationComputer scienceEnergy Engineering and Power Technology02 engineering and technologyActive heave compensationlcsh:Technologyactive heave compensationDisplacement (vector)Compensation (engineering)020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringWinchEngineering (miscellaneous)lcsh:TRenewable Energy Sustainability and the EnvironmentOscillation020208 electrical & electronic engineeringFeed forwardMotor controlVDP::Teknologi: 500winchhydrostatic transmissionPerformance improvementEnergy (miscellaneous)Energies
researchProduct

A method for smoothly disengaging the load-holding valves of energy-efficient electro-hydraulic systems

2020

A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop o…

Computer sciencePressure controlElectro-hydraulic systemsKinematicsLinear actuatorSelf-contained cylindersMotion controlAutomotive engineeringlaw.inventionCylinder (engine)PistonVDP::Teknologi: 500Energy efficiencylawLinear actuatorsPassive load holdingActuatorLoad carrying applicationsEnergy recoveriesEfficient energy use
researchProduct

Motion Control of Large Inertia Loads Using Electrohydrostatic Actuation

2020

Electrohydrostatic actuation is an emerging technology combining the advantages of hydraulic and electric actuation, resulting in energy efficient solutions that appear electric from the outside while hydraulic on the inside. Conventional solutions, however, significantly reduce the natural frequency of the system compared to traditional hydraulic actuators. This may result in considerable loss of performance under feedback control. In this paper, a simple modification for increasing the natural frequency of the system involving a high-pressure accumulator is proposed and investigated. Theoretical analysis demonstrates the potential for considerable improvements using the proposed solution,…

Computer simulationComputer science020209 energymedia_common.quotation_subject020208 electrical & electronic engineeringNatural frequency02 engineering and technologyInertiaMotion controlAccumulator (energy)Improved performanceControl theory0202 electrical engineering electronic engineering information engineeringActuatormedia_commonEfficient energy use2020 IEEE 16th International Workshop on Advanced Motion Control (AMC)
researchProduct

The Working Hydraulics of Valve-Controlled Mobile Machines: Classification and Review

2020

Abstract Productivity, reliability, controllability, flexibility, and affordable costs represent key aspects in mobile machines. Additionally, due to the high fuel price and the introduction of stringent emission regulations for diesel engines, the reduction of fuel consumption while persevering the existing performance is the current demand. In order to satisfy and maximize the above requirements, different hydraulic system architectures have been developed during the last decades. Both academia and industry have been investing considerable resources delivering numerous outcomes that require a classification. This review paper closes this gap by analyzing and classifying the working hydrau…

HydraulicsComputer sciencebusiness.industry020209 energyMechanical Engineering020208 electrical & electronic engineering02 engineering and technologyStructural engineeringComputer Science Applicationslaw.inventionStress (mechanics)Control and Systems Engineeringlaw0202 electrical engineering electronic engineering information engineeringDisplacement (orthopedic surgery)ActuatorbusinessInstrumentationInformation Systems
researchProduct

A Gasless Reservoir Solution for Electro-Hydraulic Compact Drives with Two Prime Movers

2020

Abstract Due to an increased focus on improving the energy efficiency and compactness of hydraulic linear actuators, the electro-hydraulic compact drive (ECD) has received increased attention lately. In this study the ECD consists of variable-speed electric motors and fixed-displacement pumps, which are directly connected to the cylinder, thus controlling the linear motion in a throttleless manner. Furthermore, ECDs are self-contained systems, i.e. based on a fully enclosed oil circuit, in order to avoid external contamination and air to enter the system and to increase system compactness. Conventionally a low-pressure gas-loaded accumulator is used as an oil reservoir to compensate for the…

Electric motorComputer scienceMechanical engineeringActuatorElectro hydraulicPrime (order theory)
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency

2019

This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo

0209 industrial biotechnologyControl and OptimizationComputer scienceHydraulicspassive load-holdingenergy recoveryComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologyAutomotive engineeringlaw.invention020901 industrial engineering & automationlinear actuatorslawload-carrying applications0202 electrical engineering electronic engineering information engineeringHydraulic machineryenergy efficiencyEnergy recoveryVDP::Teknologi: 500::Materialteknologi: 520020208 electrical & electronic engineeringEnergy consumptionLinear actuatorFluid powerControl and Systems Engineeringproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemsEfficient energy useActuators
researchProduct