Heat shock response in yeast involver changes in both transcription rates and mRNA stabilities
We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25uC to 37uC. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of …
Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes
The Saccharomyces cerevisiae GRX5 gene codes for a mitochondrial glutaredoxin involved in the synthesis of iron/sulfur clusters. Its absence prevents respiratory growth and causes the accumulation of iron inside cells and constitutive oxidation of proteins. Null ⌬grx5 mu- tants were used as an example of continuously oxidized cells, as opposed to situations in which oxidative stress is instantaneously caused by addition of external oxi- dants. Whole transcriptome analysis was carried out in the mutant cells. The set of genes whose expression was affected by the absence of Grx5 does not significantly overlap with the set of genes affected in respiratory petite mutants. Many Aft1-dependent ge…
Comprehensive transcriptional analysis of the oxidative response in yeast
The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA level and transcription rate kinetics, and average mRNA decay rates have been calculated for each cluster. In most of the genes, changes in one or both experimentally determined parameters occur during the stress response. 24% of the genes are transcriptionally induced without an increase inmRNAlevels…