0000000000054538

AUTHOR

I. Korover

showing 54 related works from this author

Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics

2019

We present measurements of the polarization-transfer components in the H2(e→,e′p→) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmiss, up to 220MeV/c, and Q2=0.65 (GeV/c)2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components Px and Pz and their ratio agree with the theoretical calculations, which use free-proton form factor…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesKinematicsPolarization (waves)01 natural scienceslcsh:QC1-999NATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Parallel kinematicsNuclear physicsDeuterium0103 physical sciencesddc:530Nuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Nuclear ExperimentMicrotronlcsh:Physicspolarization-transfer ; deuteron ; anti-parallel kinematics
researchProduct

Comparing proton momentum distributions in A = 2 and 3 nuclei via 2H 3H and 3He (e,e′p) measurements

2019

We report the first measurement of the $(e,e'p)$ reaction cross-section ratios for Helium-3 ($^3$He), Tritium ($^3$H), and Deuterium ($d$). The measurement covered a missing momentum range of $40 \le p_{miss} \le 550$ MeV$/c$, at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV$/c$)$^2$) and $x_B>1$, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for $^3$He$/d$ and $^3$H$/d$ extend to just above the typical nucleon Fermi-momentum ($k_F \approx 250$ …

production [pi]Nuclear and High Energy Physicsdata analysis methodPhotonNuclear TheoryNuclear TheoryinterferenceFOS: Physical sciencesElectronImpulse (physics)Inelastic scattering01 natural sciencesxperimental results | Jefferson Lab | electron p: scattering | parity: violation | inelastic scattering | structure function | interference | photon | Z0 | pi: production | spin: asymmetry | data analysis methodNuclear Theory (nucl-th)structure function0103 physical sciencesZ0Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsMomentum transferphotoninelastic scatteringscattering [electron p]Eikonal approximationNATURAL SCIENCES. Physics.lcsh:QC1-999PRIRODNE ZNANOSTI. Fizika.Deuteriumxperimental resultsHigh Energy Physics::Experimentviolation [parity]Atomic physicsNucleonasymmetry [spin]lcsh:PhysicsJefferson LabPhysics Letters B
researchProduct

Components of polarization-transfer to a bound proton in a deuteron measured by quasi-elastic electron scattering

2018

We report the first measurements of the transverse (Px and Py) and longitudinal (Pz) components of the polarization transfer to a bound proton in the deuteron via the H2(e→,e′p→) reaction, over a wide range of missing momentum. A precise determination of the electron beam polarization reduces the systematic uncertainties on the individual components to a level that enables a detailed comparison to a state-of-the-art calculation of the deuteron using free-proton electromagnetic form factors. We observe very good agreement between the measured and the calculated Px/Pz ratios, but deviations of the individual components. Our results cannot be explained by medium modified electromagnetic form f…

PhysicsNuclear reactionNuclear and High Energy PhysicsProton010308 nuclear & particles physicsScatteringHadronNuclear TheoryFOS: Physical sciencesElectronPolarization (waves)7. Clean energy01 natural scienceslcsh:QC1-999Deuterium0103 physical sciencespolarization-transfer ; deutronAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experimentlcsh:PhysicsPhysics Letters
researchProduct

The influence of Fermi motion on the comparison of the polarization transfer to a proton in elastic e→p and quasi-elastic e→A scattering

2019

Abstract A comparison between polarization-transfer to a bound proton in quasi-free kinematics by the A ( e → , e ′ p → ) knockout reaction and that in elastic scattering off a free proton can provide information on the characteristics of the bound proton. In the past the reported measurements have been compared to those of a free proton with zero initial momentum. We introduce, for the first time, expressions for the polarization-transfer components when the proton is initially in motion and compare them to the 2H data measured at the Mainz Microtron (MAMI). We show the ratios of the transverse ( P x ) and longitudinal ( P z ) components of the polarization transfer in H 2 ( e → , e ′ p → …

PhysicsElastic scatteringNuclear and High Energy Physics010308 nuclear & particles physicsScatteringInitial momentumNuclear TheoryKinematicsPolarization (waves)01 natural sciences7. Clean energyTransverse plane0103 physical sciencesPhysics::Accelerator PhysicsAtomic physicsNuclear Experiment010306 general physicsMicrotronFermi Gamma-ray Space TelescopePhysics Letters B
researchProduct

Measurements of the induced polarization in the quasi-elastic A(e,e′p→) process in non-coplanar kinematics

2020

Abstract We report measurements of the induced polarization P → of protons knocked out from 2H and 12C via the A ( e , e ′ p → ) reaction. We have studied the dependence of P → on two kinematic variables: the missing momentum p miss and the “off-coplanarity” angle ϕ p q between the scattering and reaction planes. For the full 360° range in ϕ p q , both the normal ( P y ) and, for the first time, the transverse ( P x ) components of the induced polarization were measured with respect to the coordinate system associated with the scattering plane. P x vanishes in coplanar kinematics, however in non-coplanar kinematics, it is on the same scale as P y . We find that the dependence on ϕ p q is si…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsPlane (geometry)ScatteringShell (structure)7. Clean energy01 natural sciencesInduced polarizationp-processMomentumTransverse planeDeuterium0103 physical sciencesAtomic physics010306 general physicsPhysics Letters B
researchProduct

Measurements of the electron-helicity asymmetry in the quasi-elastic A(e→,e′p) process

2022

Abstract We present measurements of the electron helicity asymmetry in quasi-elastic proton knockout from 2H and 12C nuclei by polarized electrons. This asymmetry depends on the fifth structure function, is antisymmetric with respect to the scattering plane, and vanishes in the absence of final-state interactions, and thus it provides a sensitive tool for their study. Our kinematics cover the full range in off-coplanarity angle ϕ p q , with a polar angle θ p q coverage up to about 8°. The missing energy resolution enabled us to determine the asymmetries for knock-out resulting in different states of the residual 11B system. We find that the helicity asymmetry for p-shell knockout from 12C d…

PhysicsNuclear and High Energy PhysicsMissing energyProton010308 nuclear & particles physicsScatteringAntisymmetric relationmedia_common.quotation_subjectElectron01 natural sciencesHelicityAsymmetry3. Good healthMomentum0103 physical sciencesAtomic physics010306 general physicsmedia_commonPhysics Letters B
researchProduct

Rosenbluth Separation of the π^{0} Electroproduction Cross Section.

2016

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. The Rosenbluth technique was used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component, and thus is far from the asymptotic limit predicted by perturbative Quantum Chromodynamics. An indication of a non-zero longitudinal contribution is provided by the interference term $\sigma_{LT}$ also measured. Results are compared with several models based on the leading twist approach of G…

Particle physicslongitudinalinterferenceGeneral Physics and Astronomyparton: distribution functionPartonhard exclusive electroproduction; mesons[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicspi: distribution amplitudegeneralized parton distribution: transversityPiondeep inelastic scattering0103 physical scienceshard exclusive electroproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentNuclear ExperimentmesonsQuantum chromodynamicsPhysics010308 nuclear & particles physicsscattering amplitudemomentum transferSigmanucleon: generalized parton distributionScattering amplitudetransverseDistribution (mathematics)Amplitudepi0: electroproductiontwistHigh Energy Physics::ExperimentNucleonchannel cross section: measuredJefferson Labexperimental resultsPhysical review letters
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

Comparison of recoil polarization in the C12(e→,e′p→) process for protons extracted from s and p shells

2020

Abstract We present the first measurements of the double ratio of the polarization-transfer components ( P x ′ / P z ′ ) p / ( P x ′ / P z ′ ) s for knock-out protons from the s and p shells in C 12 measured by the C 12 ( e → , e ′ p → ) reaction in quasi-elastic kinematics. The data are compared to theoretical predictions in the relativistic distorted-wave impulse approximation. Our results show that the differences between s- and p-shell protons, observed when compared at the same initial momentum (missing momentum), largely disappear when the comparison is done at the same proton virtuality. We observe no difference in medium modifications between protons from the s and p shells with the…

PhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsInitial momentumNuclear TheoryImpulse (physics)Polarization (waves)01 natural sciencesp-processRecoil0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

2017

We measured the ratio Px/Pz of the transverse to longitudinal components of polarization transferred from electrons to bound protons in C12 by the C12(e→,e′p→) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px/Pz)C12/(Px/Pz)H1, for both s- and p-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from H2 and He4, suggesting a universal behavior. It further implies no dependence on average local nuclear density.

PhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesElectronPolarization (waves)01 natural scienceslcsh:QC1-999Transverse plane0103 physical sciencesPhysics::Accelerator PhysicsNuclear Experiment (nucl-ex)Atomic physics010306 general physicsNuclear ExperimentMicrotronNuclear Experimentlcsh:PhysicsNuclear density
researchProduct

Polarization-transfer measurement to a large-virtuality bound proton in the deuteron

2017

Possible differences between free and bound protons may be observed in the ratio of polarization-transfer components, $P'_x/P'_z$. We report the measurement of $P'_x/P'_z$, in the $^2\textrm{H}(\vec{e},e^{\prime}\vec{p})n$ reaction at low and high missing momenta. Observed increasing deviation of $P'_x/P'_z$ from that of a free proton as a function of the virtuality, similar to that observed in \hefour, indicates that the effect in nuclei is due to the virtuality of the knock-out proton and not due to the average nuclear density. The measured differences from calculations assuming free-proton form factors ($\sim10\%$), may indicate in-medium modifications.

PhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesPolarization (waves)01 natural sciencesNATURAL SCIENCES. Physics.lcsh:QC1-999Nuclear physicsPRIRODNE ZNANOSTI. Fizika.Deuterium0103 physical sciencesd(e e’p) ; Electron-scatteringPhysics::Accelerator PhysicsNuclear Experiment (nucl-ex)Electron-scattering010306 general physicsNuclear Experimentd(ee'p)Electron scatteringNuclear ExperimentNuclear densitylcsh:PhysicsPhysics Letters B
researchProduct

Polarization transfer to bound protons measured by quasi-elastic electron scattering on $^{12}$C

2020

We report the measurements of the transverse ($P'x$) and longitudinal ($P'z$) components of the polarization transfer to a bound proton in carbon via the quasi-free $^{12}{\rm C}(\vec e,e'\vec p)$ reaction, over a wide range of missing momenta. We determine these polarization-transfers separately for protons knocked out from the $s$- and $p$-shells. The electron-beam polarization was measured to determine the individual components with systematic uncertainties which allow a detailed comparison with theoretical calculations.

PhysicsProton010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesPolarization (waves)01 natural sciencesTransverse plane0103 physical sciencesAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentElectron scatteringNuclear Experiment
researchProduct

Deeply virtual compton scattering off the neutron.

2007

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

QuarkPhysicsParticle physicsPhoton010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear TheoryCompton scatteringFOS: Physical sciencesGeneral Physics and AstronomyVirtual particleParton[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsIsospin0103 physical sciences25.30.-c 13.60.Fz 13.85.Hd 14.20.DhHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear ExperimentPhysical review letters
researchProduct

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

2017

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

longitudinalNuclear Theoryn: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependenceelectron n: scatteringHigh Energy Physics - Experimentgeneralized parton distribution: transversity[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hard exclusive electroproductionrecoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]polarization: transverse[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experimentmesonsflavorgeneralized parton distributionsscatteringgeneralized parton distributions; hard exclusive electroproduction; mesons; scatteringdeuteron: structure functionelectron deuteron --> electron deuteron pi0electron deuteron: deep inelastic scatteringnucleon: generalized parton distributionphoton: polarizationcoherencepi0: electroproductionHigh Energy Physics::Experimentexperimental results
researchProduct

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct