0000000000054656

AUTHOR

Stefania Abbruzzetti

0000-0001-7685-8554

Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin

Abstract: Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe t…

research product

Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7

AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…

research product

More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function

Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, …

research product

Light-Induced Protein-Matrix Uncoupling and Protein Relaxation in Dry Samples of Trehalose-Coated MbCO at Room Temperature

In humid samples of trehalose-coated carboxy-myoglobin (MbCO), thermally driven conformational relaxation takes place after photodissociation of the carbon monoxide (CO) molecule at room temperature. In such samples, because of the extreme viscosity of the external matrix, photodissociated CO cannot diffuse out of the protein and explores the whole (proximal and distal side) heme pocket, experiencing averaged protein heme pocket structures, as a result of the presence of Brownian motions. At variance, in very dry samples, a lower portion of the photodissociated CO diffuses from the distal to the proximal heme pocket side probing in nonaveraged structures. We revisit here the flash photolysi…

research product

Structure and dynamics of the membrane attaching nitric oxide transporter nitrophorin 7 [v1; ref status: indexed, http://f1000r.es/508]

Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-r…

research product

Immobilization of proteins in silica gel: Biochemical and biophysical properties

The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulat…

research product

Structure and dynamics of the membrane attaching nitric oxide transporter nitrophorin 7 [v2; ref status: indexed, http://f1000r.es/5p1]

Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus of NP7, a member of the NO transporter nitrophorin family, contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of…

research product

Kinetics of proton release and uptake by channelrhodopsin-2

Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the View the MathML sourceP3520 intermediate. As the View the MathML sourceP3520 state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the tw…

research product

The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties

A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 +/- 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same a globin combined with two copies of three very similar beta subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology.…

research product

Characterization of the Heme Pocket Structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus

14 Pags.- 6 Figs. This article is part of the Research Topic: Advances in legume research ( http://journal.frontiersin.org/researchtopic/4288/advances-in-legume-research ). Copyright of the Authors through a Creative Commons Attribution License. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.

research product

CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin

Abstract: Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate…

research product