6533b823fe1ef96bd127f866
RESEARCH PRODUCT
Immobilization of proteins in silica gel: Biochemical and biophysical properties
Luca RondaStefano BrunoBarbara CampaniniAndrea MozzarelliStefania AbbruzzettiCristiano ViappianiAntonio CupaneMatteo LevantinoStefano Bettatisubject
protein dynamicsol-gel; encapsulation; biophysics; protein dynamics; heme proteinsOrganic Chemistrysol-gelencapsulationConformational transitionsProtein dynamicsbiophysicSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)heme proteinsdescription
The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |