0000000000054788
AUTHOR
Yongle Yu
Rotating quantum liquids crystallize
Small crystallites form when finite quantal systems are set highly rotating. This crystallization is independent of the statistics of the particles, and occurs for both trapped bosons and fermions. The spin degree of freedom does not change the tendency for localization. In a highly rotating state, the strongly correlated bosonic and fermionic systems approach to that of classical particles.
Finite boson and fermion systems under extreme rotation: edge reconstruction and vortex formation
Vortices can form when finite quantal systems are set rotating. In the limit of small particle numbers, the vortex formation in a harmonically trapped fermion system, with repulsively interacting particles, shows similarities to the corresponding boson system, with vortices entering the rotating cloud for increasing rotation. For a larger number of fermions, N greater than or similar to 15, the fermion vortices compete and co-exist with (Chamon-Wen) edge-reconstructed ground states, forcing some ground states, as for example the central single vortex, into the spectrum of excited states. Experimentally, the fermion system could, for instance, be electrons in a semiconductor heterostructure,…
Vortex rings in two-dimensional harmonic traps
We use the configuration interaction technique to study vortex formation in rotating systems of interacting spinless fermions and bosons trapped in a two-dimensional harmonic potential. In the fermionic case, the vortices appear as holes in the Fermi sea and localize in rings. The yrast spectrum is dominated by rigid rotation of the vortex ring, showing periodic oscillations. The Bose system shows a similar yrast spectrum and vortex formation. This can be explained by a one-to-one correspondence of the fermion and boson many-particle configurations. A simple mean-field model can reproduce the oscillations in the yrast spectrum, but fails to explain the localization of vortices.
Electron-hole duality and vortex rings in quantum dots
In a quantum-mechanical system, particle-hole duality implies that instead of studying particles, we can get equivalent information by studying the missing particles, the so-called holes. Using this duality picture for rotating fermion condensates the vortices appear as holes in the Fermi see. Here we predict that the formation of vortices in quantum dots at high magnetic fields causes oscillations in the energy spectrum which can be experimentally observed using accurate tunnelling spectroscopy. We use the duality picture to show that these oscillations are caused by the localisation of vortices in rings.
Vortex localization in rotating clouds of bosons and fermions
Finite quantal systems at high angular momenta may exhibit vortex formation and localization. These phenomena occur independent of the statistics of the repulsively interacting particles, which may be of bosonic or fermionic nature. We analyze the relation between vortex localization and formation of stable Wigner molecules at high angular momenta in the view of particle-hole duality.Trial wave functions for the vortex states and the corresponding fermion-boson relations are discussed.