6533b7cefe1ef96bd1257c1a

RESEARCH PRODUCT

Rotating quantum liquids crystallize

Yongle YuM KoskinenStephanie ReimannM. Manninen

subject

Condensed Matter::Quantum GasesPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsFOS: Physical sciencesGeneral Physics and AstronomyState (functional analysis)Fermionlaw.inventionCondensed Matter - Strongly Correlated ElectronslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)CrystalliteCrystallizationQuantumBosonSpin-½

description

Small crystallites form when finite quantal systems are set highly rotating. This crystallization is independent of the statistics of the particles, and occurs for both trapped bosons and fermions. The spin degree of freedom does not change the tendency for localization. In a highly rotating state, the strongly correlated bosonic and fermionic systems approach to that of classical particles.

https://doi.org/10.1088/1367-2630/8/4/059