0000000000055538

AUTHOR

Antonio Budano

showing 20 related works from this author

Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation

2019

Clock synchronization procedures are mandatory in most physical experiments where event fragments are readout by spatially dislocated sensors and must be glued together to reconstruct key parameters (e.g. energy, interaction vertex etc.) of the process under investigation. These distributed data readout topologies rely on an accurate time information available at the frontend, where raw data are acquired and tagged with a precise timestamp prior to data buffering and central data collecting. This makes the network complexity and latency, between frontend and backend electronics, negligible within upper bounds imposed by the frontend data buffer capability. The proposed research work describ…

EthernetFOS: Computer and information sciencesNuclear and High Energy PhysicsEye diagram; field-programmable gate arrays (FPGAs); front-end electronics; hardware; synchronization; timing systemfront-end electronicEye diagramtiming systemSerial communicationData bufferNetwork topology01 natural sciencesClock synchronizationNOComputer Science - Networking and Internet ArchitecturePE2_20103 physical sciencesSynchronization (computer science)hardwareElectrical and Electronic EngineeringNetworking and Internet Architecture (cs.NI)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica Sperimentalefront-end electronicsNuclear Energy and Engineeringfield-programmable gate arrays (FPGAs)Precision Time ProtocolbusinesssynchronizationComputer hardwareData link layer
researchProduct

Search for an Invisibly Decaying Z′ Boson at Belle II in e+e−→μ+μ−(e±μ∓) Plus Missing Energy Final States

2020

Theories beyond the standard model often predict the existence of an additional neutral boson, the Z′. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible decay of a Z′ in the process e+e-→μ+μ-Z′ and of a lepton-flavor-violating Z′ in e+e-→e±μZ′. We do not find any excess of events and set 90% credibility level upper limits on the cross sections of these processes. We translate the former, in the framework of an Lμ-Lτ theory, into upper limits on the Z′ coupling constant at the level of 5×10-2-1 for MZ′≤6 GeV/c2.

PhysicsCoupling constantParticle physicsMissing energyPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural scienceslaw.inventionlaw0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsColliderBosonPhysical Review Letters
researchProduct

Search for Axionlike Particles Produced in e+e− Collisions at Belle II

2020

We present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2<ma<9.7 GeV/c2 using data corresponding to an integrated luminosity of (445±3) pb-1. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength gaγγ of ALPs to photons at the level of 10-3 GeV-1. The limits are the most restrictive to date for 0.2<ma<1 GeV/c2.

PhysicsRange (particle radiation)Particle physicsGauge bosonLuminosity (scattering theory)Photon010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural scienceslaw.inventionStandard ModelPseudoscalarDirect productionlaw0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsColliderPhysical Review Letters
researchProduct

Observation of the rare η→e+e−e+e− decay with the KLOE experiment

2011

Abstract We report the first observation of the rare η → e + e − e + e − ( γ ) decay based on 1.7 fb − 1 collected by the KLOE experiment at the DAΦNE ϕ-factory. The selection of the e + e − e + e − final state is fully inclusive of radiation. We have identified 362 ± 29 events resulting in a branching ratio of ( 2.4 ± 0.2 stat + bckg ± 0.1 syst ) × 10 − 5 .

PhysicsNuclear physicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBranching fractionElectron–positron annihilation0103 physical sciencesRadiation010306 general physics01 natural sciencesPhysics Letters B
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Precise Measurement of the D0 and D+ Lifetimes at Belle II

2021

We report a measurement of the D^{0} and D^{+} lifetimes using D^{0}→K^{-}π^{+} and D^{+}→K^{-}π^{+}π^{+} decays reconstructed in e^{+}e^{-}→cc[over ¯] data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the ϒ(4S) resonance, correspond to an integrated luminosity of 72  fb^{-1}. The results, τ(D^{0})=410.5±1.1(stat)±0.8(syst)  fs and τ(D^{+})=1030.4±4.7(stat)±3.1(syst)  fs, are the most precise to date and are consistent with previous determinations.

PhysicsParticle physics010308 nuclear & particles physicslaw0103 physical sciencesGeneral Physics and AstronomyResonance010306 general physicsCollider01 natural scienceslaw.inventionLuminosityPhysical Review Letters
researchProduct

Charge reconstruction in large-area photomultipliers

2018

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction …

PhotomultiplierLiquid detectorsvisible and IR photons (vacuum) (photomultipliers HPDs others)Physics - Instrumentation and Detectorsgas and liquid scintillators)Physics::Instrumentation and DetectorsPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FOS: Physical sciencesvisible and IR photons (vacuum) (photomultipliers HPDsScintillatorvisible and IR photons (vacuum) (photomultipliers01 natural sciencesParticle detectorNOsymbols.namesakeOptics0103 physical sciencesCalorimeter methods010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsPhysicsscintillation and light emission processes (solid gas and liquid scintillators)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleWiener filterDetectorReconstruction algorithmScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)Scintillatorscintillation and light emission processes (solidCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)Neutrino detectorHPDsCalorimeter methodScintillatorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)symbolsLiquid detectorCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Deconvolutionbusinessothers)scintillation and light emission processes (solid gas and liquid scintillators)
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment

2012

The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People's Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region $(5\textdiv{}200)\text{ }\text{ }\mathrm{TeV}$ is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium sp…

Extended Air Showers Cosmic Rays Gamma Ray sourcesNuclear and High Energy PhysicsProtonTIBETAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerchemistry.chemical_elementCosmic rayHELIUM SPECTRAAstrophysicsPROTONBayesian methodCASCADESSpectral lineSettore FIS/05 - Astronomia E AstrofisicaNuclear magnetic resonanceCosmic-ray observatoryHeliumPhysicsRange (particle radiation)ENERGY-RANGEBALLOON EXPERIMENTNUCLEISettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for Astrophysicslight component spectrumchemistryEnergy (signal processing)SYSTEM
researchProduct

Physics with the KLOE-2 experiment at the upgraded DAFNE

2010

Investigation at a $\phi$--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta$^\prime$ mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We…

Particle physicsField theory (Physics)MesonPhysics and Astronomy (miscellaneous)Scalar (mathematics)HadronContinuum (design consultancy)01 natural sciencesPartícules (Física nuclear)Standard ModelGamma gammaHigh Energy Physics - Experiment0103 physical sciencesRadiative transferMesons (Nuclear physics)Teoria quànticaMesons (Física nuclear)010306 general physicsEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Nuclear ExperimentEngineering (miscellaneous)Particles (Nuclear physics)PhysicsQuantum Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTime evolutionTeoria de camps (Física)FísicaKaons3. Good healthHigh Energy Physics - PhenomenologyQuantum theoryHigh Energy Physics::Experiment
researchProduct

Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

2012

We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statist…

Astrophysics::High Energy Astrophysical Phenomenageneral – pulsars: individual (MGRO J2019+37 [Gamma rays]FluxFOS: Physical sciencesAstrophysics01 natural sciencesPulsar wind nebulageneral – pulsar0103 physical sciencesMILAGRO010303 astronomy & astrophysicsDETECTORArgoPhysicsCALIBRATIONHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsMGRO J2031+41)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysicsindividual (MGRO J2019+37 MGRO J2031+41)PLANE3. Good healthMedium energyCrab Nebulagamma ray13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESJ2032+4130Milagrogamma rays; general – pulsars; individual (MGRO J2019+37 MGRO J2031+41)EMISSIONAstrophysics - High Energy Astrophysical Phenomena
researchProduct

GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment

2019

Gravimetric methods are expected to play a decisive role in geophysical modeling of the regional crustal structure applied to geoneutrino studies. GIGJ (GOCE Inversion for Geoneutrinos at JUNO) is a 3D numerical model constituted by ~46 x 10$^{3}$ voxels of 50 x 50 x 0.1 km, built by inverting gravimetric data over the 6{\deg} x 4{\deg} area centered at the Jiangmen Underground Neutrino Observatory (JUNO) experiment, currently under construction in the Guangdong Province (China). The a-priori modeling is based on the adoption of deep seismic sounding profiles, receiver functions, teleseismic P-wave velocity models and Moho depth maps, according to their own accuracy and spatial resolution. …

010504 meteorology & atmospheric sciencesGeoneutrinogeophysical uncertaintieInverse transform samplingFOS: Physical sciences01 natural sciencesBayesian methodUpper middle and lower crustStandard deviationNOSouth China BlockmiddlePhysics - GeophysicsMonte Carlo stochastic optimizationGOCE data gravimetric inversionGeophysical uncertaintiesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Bayesian method; geophysical uncertainties; GOCE data gravimetric inversion; Monte Carlo stochastic optimization; South China Block; upper middle and lower crustImage resolution0105 earth and related environmental sciencesSubdivisionJiangmen Underground Neutrino Observatoryupper and middle and lower crustbusiness.industrySettore FIS/01 - Fisica SperimentaleCrustupperGeodesy[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Geophysics (physics.geo-ph)and lower crustDepth soundingGeophysics13. Climate actionSpace and Planetary SciencebusinessGeologyBayesian method geophysical uncertainties GOCE data gravimetric inversion Monte Carlo stochastic optimization South China Blockupper and middle and lower crust
researchProduct

Search for B+→K+νν¯ Decays Using an Inclusive Tagging Method at Belle II

2021

A search for the flavor-changing neutral-current decay B^{+}→K^{+}νν[over ¯] is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The data sample corresponds to an integrated luminosity of 63 fb^{-1} collected at the ϒ(4S) resonance and a sample of 9 fb^{-1} collected at an energy 60 MeV below the resonance. Because the measurable decay signature involves only a single charged kaon, a novel measurement approach is used that exploits not only the properties of the B^{+}→K^{+}νν[over ¯] decay, but also the inclusive properties of the other B meson in the ϒ(4S)→BB[over ¯] event, to suppress the background from other B meson decays and light-qua…

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsBranching fractionElectron–positron annihilationGeneral Physics and AstronomyResonance01 natural scienceslaw.inventionPair productionlaw0103 physical sciencesHigh Energy Physics::ExperimentB meson010306 general physicsColliderEnergy (signal processing)Physical Review Letters
researchProduct

Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

2012

Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is particularly effective in measuring the cosmic ray …

PhysicsNuclear and High Energy PhysicsAntiparticleAstrophysics::High Energy Astrophysical PhenomenaDark matterSettore FIS/01 - Fisica SperimentaleEarth-MoonCosmic raymagnetic spectrometerCosmic rayHigh Energy Physics - ExperimentNuclear physicsEarth's magnetic fieldAntiprotonAntimatterantiprotonContent (measure theory)Antiproton-Proton ratio Cosmic rays Extended Air ShowersAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

The Argo YBJ daq system and the GRID based data transfer

2008

The Argo-YBJ experiment has now reached itsfinal design configuration. The detector system consists of a fullcoverage array (about 5800 square meters) of Resistive PlateChambers (RPCs). The throughput depends on the trigger rateand threshold. The DAQ system must be able to sustain a max-imum transfer rate of the order of 15 MB/s and a high peakdata flow. Data are read out using a typical front-end acquisitionchain built around a custom bus. Specialized electronics have beendesigned and dedicated software has been written to perform thistask. Data are sent to the online farm through a switch exploitinga gigabit ethernet protocol. A solution to transfer data from theYBJ laboratory to the labo…

Nuclear and High Energy PhysicsEngineeringbusiness.industryGigabit Ethernetcomputer.software_genreGridData flow diagramData acquisitionNuclear Energy and EngineeringGrid computingNuclear electronicsData acquisition data mover GRID RPCElectrical and Electronic EngineeringbusinessThroughput (business)computerComputer hardwareData transmission
researchProduct

Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

2009

The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are …

Nuclear and High Energy PhysicsCosmic rays Proton-air cross section gamma astronomyProtonAstrophysics::High Energy Astrophysical PhenomenaHadronCosmic rayCross Section01 natural sciencesCosmic RayHigh Energy Physics - ExperimentNuclear physics0103 physical sciencesMultiplicity (chemistry)010306 general physicsNuclear ExperimentZenithArgoPhysics010308 nuclear & particles physicsAttenuationDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysics3. Good healthHadronic InteractionHigh Energy Physics::ExperimentExtensive Air Showers
researchProduct

A new limit on the CP violating decay KS→3π0 with the KLOE experiment

2013

We have carried out a new direct search for the CP violating decay K-S -> 3 pi(0) with 1.7 fb(-1) of e(+)e(-) collisions collected by the KLOE detector at the Phi-factory DA Phi NE. We have searched for this decay in a sample of about 5.9 x 10(8) KSKL events tagging the K-S by means of the K-L interaction in the calorimeter and requiring six prompt photons. With respect to our previous search, the analysis has been improved by increasing of a factor four the tagged sample and by a more effective background rejection of fake K-S tags and spurious clusters. We find no candidates in data and simulated background samples, while we expect 0.12 standard model events. Normalizing to the number of …

PhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physics01 natural sciencesStandard ModelCalorimeterNuclear physics0103 physical sciencesCP violationDirect searchLimit (mathematics)010306 general physicsPhysics Letters B
researchProduct

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

2019

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

Large-scale experimentNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency; Nuclear and High Energy Physics; Instrumentationscintillation counter: liquidMixing (process engineering)Full scaleFOS: Physical sciencesRadiopurityfabricationScintillator01 natural sciences7. Clean energyStripping (fiber)law.inventionNOlaw0103 physical sciencesthorium: admixtureAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsProcess engineeringDistillationInstrumentationbackground: radioactivityNuclear and High Energy PhysicPhysicsLABJUNOLarge-scale experiments010308 nuclear & particles physicsbusiness.industryuranium: admixtureSettore FIS/01 - Fisica SperimentaleAttenuation lengthInstrumentation and Detectors (physics.ins-det)Attenuation lengthNitrogen purgingNeutrino detectorScintillator transparencyNeutrinobusinessaluminum: oxygenLight yield
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct