6533b824fe1ef96bd128169b

RESEARCH PRODUCT

Charge reconstruction in large-area photomultipliers

N. PellicciaAntonio InsoliaF. Dal CorsoVirginia StratiG. SalamannaAlessandro PaoloniM. SpinettiAntonio BudanoLuca StancoS. DusiniXuefeng DingSeverino Angelo Maria BussinoAldo RomaniFabio LonghitanoG. GaletIvano LippiS. ParmeggianoM. MezzettoD. Lo PrestiMarco GiammarchiD. PedrettiDaniele CortiGiuseppe AndronicoMarco BellatoR. BrugneraGiulio SettantaFatma SawyCristina MartelliniM. MontuschiR. FordMarco GrassiLucia VotanoDavide ChiesaDavide ChiesaA. GarfagniniPaolo LombardiChiara SirignanoAlessandra ReP. SaggeseMarica BaldonciniGiuseppe VerdeEzio PrevitaliEzio PrevitaliBarbara RicciGioacchino RanucciRossella CarusoE. MeroniFilippo MariniStefano Maria MariVito AntonelliAndrey FormozovG. FiorentiniFabio MantovaniSalvatore MonforteM. BuscemiLino MiramontiFausto OrticaEnrico BernieriRoberto IsocrateAndrea FabbriR. PompilioA. BrigattiMassimiliano NastasiMassimiliano NastasiMonica SistiMonica SistiAgnese Giaz

subject

PhotomultiplierLiquid detectorsvisible and IR photons (vacuum) (photomultipliers HPDs others)Physics - Instrumentation and Detectorsgas and liquid scintillators)Physics::Instrumentation and DetectorsPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FOS: Physical sciencesvisible and IR photons (vacuum) (photomultipliers HPDsScintillatorvisible and IR photons (vacuum) (photomultipliers01 natural sciencesParticle detectorNOsymbols.namesakeOptics0103 physical sciencesCalorimeter methods010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsPhysicsscintillation and light emission processes (solid gas and liquid scintillators)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleWiener filterDetectorReconstruction algorithmScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)Scintillatorscintillation and light emission processes (solidCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)Neutrino detectorHPDsCalorimeter methodScintillatorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)symbolsLiquid detectorCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Deconvolutionbusinessothers)scintillation and light emission processes (solid gas and liquid scintillators)

description

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions ---such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from $0.769 \pm 0.001$ (without deconvolution) to $0.989 \pm 0.001$ (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at http://www.fe.infn.it/CRA .

10.1088/1748-0221/13/02/p02008http://hdl.handle.net/11391/1423049