0000000000056457
AUTHOR
Sergey Belyakov
Carbene-metal complexes as molecular scaffolds for construction of through-space TADF emitters
Through-space charge transfer (CT) process is observed in Cu(I) carbene-metal-amide complexes, where conventional imidazole or imidazoline N-heterocyclic (NHC) carbene fragments act as inert linkers and CT proceeds between a metal-bound carbazole donor and a distantly situated carbene-bound phenylsulfonyl acceptor. The resulting electron transfer gives a rise to efficient thermally activated delayed fluorescence (TADF), characterized with high photoluminescence quantum yields (ΦPL up to 90 %) and radiative rates (kr) up to 3.32×105 s-1. TADF process is aided by fast reverse intersystem crossing (rISC) rates of up to 2.56×107 s-1. Such emitters can be considered as hybrids of two existing TA…
Dendronized azochromophores with aromatic and perfluoroaromatic fragments: Synthesis and properties demonstrating Ar ArF interactions
Abstract Syntheses of four new dendronized azochromophores were performed from 2-(2-amino-5-nitrophenoxy)ethanol, 2-[methyl(phenyl)amino]ethanol, 3,5-bis(benzyloxy)benzoic acid and 3,5-bis[(pentafluorophenyl)methoxy]benzoic acid using azo coupling reaction and ester formation reaction in presence of N,Nʹ-dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine. Arene-perfluoroarene (Ar ArF) interactions are demonstrated in single crystal structure of dendronized azochromophore between pentafluorophenyl fragment and acceptor part of the azochromophore. The effect of Ar ArF interactions becomes apparent in thermal and nonlinear optical properties of the chromophores. Glass transition temperatur…
Solvates of Dasatinib: Diversity and Isostructurality
A series of dasatinib crystalline forms were obtained, and a hierarchical cluster analysis of their powder X-ray diffraction patterns was performed. The resulting dendrogram implies 3 structural groups. The crystal structures of several solvates representing 2 of these groups were determined. The crystal structure analysis confirms the isostructurality of solvates within structural group I and suggests a correlation between solvent molecule size and trends in crystal structures within this group. In addition, the formation relationships in 2-solvent media between different dasatinib solvate groups were determined. The formation preference of solvates was found to follow the ranking group I …
Dipotassium 4,4′-(hexane-3,4-diyl)bis(benzenesulfonate) dihydrate
The anion of the title compound, also called sygethin dihydrate, 2K+·C18H20O6S22−·2H2O, has crystallographic inversion symmetry. The K+ cation is surrounded by eight O atoms in a distorted cubic coordination geometry, forming extended K—O—S networks. There are also O—H...O hydrogen bonds.
On the Rationalization of Formation of Solvates: Experimental and Computational Study of Solid Forms of Several Nitrobenzoic Acid Derivatives
Analysis of crystal structures, molecular properties, interaction strength in solution and computationally generated non-solvated form solid form landscapes of five chloronitrobenzoic acid isomers ...
Synthesis, spectroscopic and conformational analysis of 1,4-dihydroisonicotinic acid derivatives
Abstract Structural and conformational properties of 1,4-dihydroisonicotinic acid derivatives, characterized by ester, ketone or cyano functions at positions 3 and 5 in solid and liquid states have been investigated by X-ray analysis and nuclear magnetic resonance and supported by quantum chemical calculations. The dihydropyridine ring in each of the compounds exists in flattened boat-type conformation. The observed ring distortions around the C(4) and N(1) atoms are interrelated. The substituent at N(1) has great influence on nitrogen atom pyramidality. The 1H, 13C and 15N NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as…
Fluorescent substituted amidines of benzanthrone: synthesis, spectroscopy and quantum chemical calculations.
Abstract Several new substituted amidine derivatives of benzanthrone were synthesized by a condensation reaction from 3-aminobenzo[de]anthracen-7-one and appropriate aromatic and aliphatic amides. The obtained derivatives have a bright yellow or orange fluorescence in organic solvents and in solid state. The novel benzanthrone derivatives were characterized by TLC analysis, 1H NMR, IR, MS, UV/vis, and fluorescence spectroscopy. The solvent effect on photophysical behaviors of these dyes was investigated, and the results showed that the Stoke’s shift increased, whereas quantum yield decreased with the growth of the solvent polarity. The structure of some dyes was confirmed by the X-ray singl…
Evaluation of Antiradical Activity and Reducing Capacity of Synthesised Bispyridinium Dibromides Obtained by Quaternisation of 4-Pyridyl-1,4-dihydropyridines with Propargyl Bromide
New bispyridinium dibromides based on the 1,4-dihydropyridine (1,4-DHP) cycle were synthesised in the reaction between 4-pyridyl-1,4-DHP derivatives and propargyl bromide. It has been shown that variation of the substituent position on the pyridine as well as small changes in the electronic nature of the 1,4-DHP cycle as a result of the substituent nature at the 3 and 5 positions do not affect the course of the reaction and in all cases the corresponding bispyridinium dibromides 4a–e were formed. The antiradical activity, using 1,1-diphenyl-2-picrylhydrazine as a free radical scavenger, and the reducing capacity using phosphomolybdenum complexes have been evaluated for the newly synthesise…
Stereoselective synthesis and properties of 1,3-bis(dicyanomethylidene)indane-5-carboxylic acid acceptor fragment containing nonlinear optical chromophores
A series of organic push–pull type chromophores using indane-1,3-dione 5-carboxylic acid (IDCA) and novel 1,3-bis(dicyanomethylidene)indane 5-carboxylic acid (CICA) electron acceptor fragments have been synthesized and characterized. NMR and X-ray analysis revealed that condensation reactions with the CICA fragment were stereoselective and yielded benzylidenes and azomethines with E double bond configurations. Due to the non-planar geometry these compounds are chiral and were acquired as a racemic mixture. The subsequent functionalization of the carboxylic acid group with 5,5,5-triphenylpentan-1-ol yielded solution-processable glass forming materials (6, 8, 10, 13) with glass transition tem…
The Synthesis and Structure of Palladium 2,4-dimethyl-8-hydroselenoquinolinate
The internal complex palladium 2,4-dimethyl-8- hydroselenoquinolinate Pd[C9H4(CH3)2NSe]2 (I) has been synthesized in the course of study of the complexing activity of 8- hydroselenoquinoline and investigation of the nature of chemical bond metal-selenium in the five-membered metal-containing ring. X-ray diffraction data for I: Monoclinic, space group P21/n, a = 9.0092(4), b = 16.3290(7), c = 14.1073(6) A, = 106.710(2)o, V = 1987.7(2) A3, Z = 4, R1=0.0477, wR2=0.1182 for 4499 reflections (diffractometer Bruker-Nonius KappaCCD, MoK). The crystal structure of the complex I is formed by neutral asymmetric molecules Pd[C9H4(CH3)2NSe]2 in which the central atom palladium is connected bidentic…
Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides.
Abstract A series of new N-[(benzo)thiazol-2-yl]-2/3-[3,4-dihydroisoquinolin-2(1H)-yl]ethan/propanamide derivatives was synthesized and characterized by 1H, 13C NMR and IR spectroscopy and mass-spectrometry. A single crystal X-ray study of N-(1,3-benzothiazol-2-yl)-2-[3,4-dihydroisoquinolin-2(1H)-yl]ethanamide is reported to determine its conformational feature. The investigated compounds were found to be active in psychotropic in vivo, anti-inflammatory in vivo and cytotoxicity in vitro screening. They possess marked sedative action, reveal high anti-inflammatory activity, have selective cytotoxic effects and NO-induction ability concerning tumour cell lines. Some of the compounds synthesi…
Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids
Reaction of isoniazid with benzoic acid, sebacic acid, suberic acid, and cinnamic acid results in formation of cocrystals. Two polymorphs of isoniazid–suberic acid and two polymorphs of isoniazid–cinnamic acid cocrystals were isolated. Crystal structure analysis shows the presence of a pyridine–carboxylic acid synthon in the studied cocrystals. The hydrazide group of isoniazid participates in N–H···O and N–H···N hydrogen bond formation, producing different supramolecular synthons. The stability study of isoniazid cocrystals has been performed over a 22 week period. A comparison of melting points of isoniazid–dicarboxylic acid 2:1 cocrystals shows the decrease of melting point with an increa…
The effect of pH on polymorph formation of the pharmaceutically active compound tianeptine.
The anti-depressant pharmaceutical tianeptine has been investigated to determine the dynamics of polymorph formation under various pH conditions. By varying the pH two crystalline polymorphs were isolated. The molecular and crystal structures have been determined to identify the two polymorphs. One polymorph is an amino carboxylic acid and the other polymorph is a zwitterion. In the solid state the tianeptine moieties are bonded through hydrogen bonds. The zwitterion was found to be less stable and transformed to the acid form. During this investigation an amorphous form was identified.
Dipotassium 4,4'-(hexane-3,4-di-yl)bis-(benzene-sulfonate) dihydrate.
The anion of the title compound, also called sygethin dihydrate, 2K(+)·C(18)H(20)O(6)S(2) (2-)·2H(2)O, has crystallographic inversion symmetry. The K(+) cation is surrounded by eight O atoms in a distorted cubic coordination geometry, forming extended K-O-S networks. There are also O-H⋯O hydrogen bonds.
Spontaneous cocrystal hydrate formation in the solid state: crystal structure aspects and kinetics
Kinetics of anhydrous cocrystal hydration and that of cocrystal monohydrate formation from starting compounds in the solid state are studied as a function of RH and time. The propensity of the anhydrate to hydration is related to the crystal structures of anhydrous and hydrated forms.
Emission Enhancement by Intramolecular Stacking between Heteroleptic Iridium(III) Complex and Flexibly Bridged Aromatic Pendant Group
Phosphorescent iridium(III) complexes suffer from a strong aggregation quenching, limiting their use in solution-processed or crystalline organic light-emitting diodes. Here we report how an intramolecular stacking between a flexibly bridged bulky aromatic pendant group and the core of nonionic heteroleptic complex can be exploited to minimize the negative effects of this drawback. The stacked conformation provides a rigid sterical shielding of the polar molecular surface, improving photoluminescence quantum yield of the complex both in solution and crystalline state.
CCDC 1945331: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 907700: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945313: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945315: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 901799: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945330: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 890182: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Mikelis V.Veidis, Anton Podjava, and Sergey Belyakov|2013|Cryst.Growth Des.|13|1082|doi:10.1021/cg301356h
CCDC 907698: Experimental Crystal Structure Determination
Related Article: Irina Novosjolova, Erika Bizdena, Sergey Belyakov, Maris Turks|2013|Mat.Sci.Appl.Chem.|28|39|doi:10.7250/msac.2013.007
CCDC 901798: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 901796: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 907303: Experimental Crystal Structure Determination
Related Article: Alla Zablotskaya, Izolda Segal, Athina Geronikaki, Tatiana Eremkina, Sergey Belyakov, Marina Petrova, Irina Shestakova, Liga Zvejniece, Vizma Nikolajeva|2013|Eur.J.Med.Chem.|70|846|doi:10.1016/j.ejmech.2013.10.008
CCDC 1420813: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1945333: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945325: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945317: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945323: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 993834: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1520858: Experimental Crystal Structure Determination
Related Article: Lauma Laipniece, Valdis Kampars, Sergey Belyakov, Andrejs Tokmakovs, Edgars Nitiss, Martins Rutkis|2019|Dyes Pigm.|162|394|doi:10.1016/j.dyepig.2018.10.035
CCDC 890184: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Mikelis V.Veidis, Anton Podjava, and Sergey Belyakov|2013|Cryst.Growth Des.|13|1082|doi:10.1021/cg301356h
CCDC 890181: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Mikelis V.Veidis, Anton Podjava, and Sergey Belyakov|2013|Cryst.Growth Des.|13|1082|doi:10.1021/cg301356h
CCDC 901797: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945337: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 890180: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Mikelis V.Veidis, Anton Podjava, and Sergey Belyakov|2013|Cryst.Growth Des.|13|1082|doi:10.1021/cg301356h
CCDC 906252: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 994212: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 907699: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945310: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945320: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945328: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945314: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945335: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1420812: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420811: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420810: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1945322: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 931406: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945321: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945316: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945318: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945326: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 993756: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 978170: Experimental Crystal Structure Determination
Related Article: Martins Rucins, Marina Gosteva, Sergey Belyakov, Arkadij Sobolev , Karlis Pajuste, Mara Plotniece, Brigita Cekavicus, Dace Tirzite, Aiva Plotniece|2015|Aust.J.Chem.|68|86|doi:10.1071/CH14033
CCDC 1945336: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945329: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 907992: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 890183: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Mikelis V.Veidis, Anton Podjava, and Sergey Belyakov|2013|Cryst.Growth Des.|13|1082|doi:10.1021/cg301356h
CCDC 1420814: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1945327: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945319: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1945334: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 908863: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945332: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 1420809: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420807: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 933429: Experimental Crystal Structure Determination
Related Article: Inese Sarcevica, Liana Orola, Sergey Belyakov, Mikelis V. Veidis|2013|New J.Chem.|37|2978|doi:10.1039/C3NJ00489A
CCDC 996232: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1420808: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1845861: Experimental Crystal Structure Determination
Related Article: Kaspars Traskovskis, Valdis Kokars, Sergey Belyakov, Natalija Lesina, Igors Mihailovs, Aivars Vembris|2019|Inorg.Chem.|58|4214|doi:10.1021/acs.inorgchem.8b03273
CCDC 1945324: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 901800: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 915981: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1436954: Experimental Crystal Structure Determination
Related Article: Kaspars Traskovskis, Valdis Kokars, Andrejs Tokmakovs, Igors Mihailovs, Edgars Nitiss, Marina Petrova, Sergey Belyakov, Martins Rutkis|2016|J.Mater.Chem.C|4|5019|doi:10.1039/C6TC00203J
CCDC 1945312: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 933608: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 991747: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1945311: Experimental Crystal Structure Determination
Related Article: Agris Be̅rziņš, Artis Kons, Kristaps Saršu̅ns, Sergey Belyakov, Andris Actiņš|2020|Cryst.Growth Des.|20|5767|doi:10.1021/acs.cgd.0c00331
CCDC 907837: Experimental Crystal Structure Determination
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044