0000000000058652

AUTHOR

Raffael Schaffrath

showing 8 related works from this author

Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast.

2017

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppre…

lcsh:Biology (General)protein urmylationApplied MicrobiologyGeneticstRNase zymocintRNA thiolationE1-like enzyme Uba4Saccharomyces cerevisiaeubiquitin-like modifier Urm1lcsh:QH301-705.5MicrobiologyMolecular Biologysulfur transferase Tum1Microbial cell (Graz, Austria)
researchProduct

Loss of Anticodon Wobble Uridine Modifications Affects tRNALys Function and Protein Levels in Saccharomyces cerevisiae

2015

In eukaryotes, wobble uridines in the anticodons of tRNA(Lys)UUU, tRNA(Glu)UUC and tRNA(Gln)UUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined los…

Saccharomyces cerevisiae Proteinslcsh:Rlcsh:MedicineRNA Transfer Lyslcsh:QRNA FungalSaccharomyces cerevisiaeRNA Processing Post-Transcriptionallcsh:ScienceUridineResearch ArticlePLoS ONE
researchProduct

Urmylation and tRNA thiolation functions of ubiquitin-like Uba4·Urm1 systems are conserved from yeast to man

2015

AbstractThe ubiquitin-like protein Urm1 from budding yeast and its E1-like activator Uba4 have dual roles in protein urmylation and tRNA thiolation pathways. To study whether these are conserved among eukaryotes, we used gene shuffles to replace the yeast proteins by their human counterparts, hURM1 and hUBA4/MOCS3. As judged from biochemical and genetical assays, hURM1 and hUBA4 are functional in yeast, albeit at reduced efficiencies. They mediate urmylation of the peroxiredoxin Ahp1, a known urmylation target in yeast, and support tRNA thiolation. Similar to hUBA4, yeast Uba4 itself is modified by Urm1 and hURM1 suggesting target overlap between eukaryal urmylation pathways. In sum, our st…

Saccharomyces cerevisiae ProteinsUba4 (hUBA4/MOCS3)Saccharomyces cerevisiaeBiophysicstRNA thiolationSaccharomyces cerevisiaeBiochemistryUbiquitin-like urmylationRNA TransferUbiquitinStructural BiologyAnticodonGeneticsHumansUbiquitinsMolecular BiologyProtein urmylationGeneUrm1 (hURM1)Conserved SequenceSequence Homology Amino AcidbiologyActivator (genetics)TRNA thiolationCell Biologybiology.organism_classificationNucleotidyltransferasesYeastBiochemistrySulfurtransferasesbiology.proteinPeroxiredoxinHeLa CellsFEBS Letters
researchProduct

Positioning Europe for the EPITRANSCRIPTOMICS challenge

2018

WOS: 000444092300018 PubMed ID: 29671387 The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery t…

Epigenomics0301 basic medicine[SDV]Life Sciences [q-bio]Gene ExpressionDetection of RNA ModificationEpigenesis GeneticTranscriptomechemistry.chemical_compoundEcologyEvolution & EthologyNeoplasmsRNA NeoplasmEuropean FundingComputingMilieux_MISCELLANEOUSRNA Neoplasm/geneticsEpitranscriptomicsEpigenomicsStem CellsDNA NeoplasmNeoplasms/genetics[SDV] Life Sciences [q-bio]EuropeGene Expression Regulation NeoplasticDetection of RNA modificationGenetics & GenomicsComputational biologyBiologyBiochemistry & ProteomicsENCODE03 medical and health sciencesEpigenomics/standardsEpitranscriptomicsModel systemsHumansEpigeneticsDatabase of ModificationDNA Neoplasm/geneticsMolecular BiologyComputational & Systems BiologyEuropean funding[SDV.GEN]Life Sciences [q-bio]/GeneticsGene Expression ProfilingFOS: Clinical medicineNeurosciencesModel SystemsRNACell Biology030104 developmental biologychemistryGene Expression Profiling/methodsAlphabetTranscriptomeDNARNA Biology
researchProduct

Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast.

2014

Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification…

ProteomicsSaccharomyces cerevisiae Proteinslcsh:QH426-470Saccharomyces cerevisiaeBiochemistryMolecular GeneticsRNA TransferGene Expression Regulation FungalMolecular Cell BiologyGeneticsFungal GeneticsPhosphorylationPost-Translational ModificationUridineMolecular BiologyAdaptor Proteins Signal TransducingHistone AcetyltransferasesAlanineSpectrometric Identification of ProteinsBiology and life sciencesCasein Kinase INucleotidesMicrobial GeneticsProteinsCell BiologyPeptide Elongation Factorslcsh:GeneticsPhenotypeMultiprotein ComplexesRNAMolecular ComplexesTransfer RNAAnticodonsResearch ArticlePLoS genetics
researchProduct

Absolute Quantifizierung nicht‐kodierender RNA‐Spezies mittels Mikroskala‐Thermophorese

2019

ChemistryGeneral MedicineAngewandte Chemie
researchProduct

Absolute quantification of noncoding RNA by microscale thermophoresis

2019

Abstract Accurate quantification of the copy numbers of noncoding RNA has recently emerged as an urgent problem, with impact on fields such as RNA modification research, tissue differentiation, and others. Herein, we present a hybridization‐based approach that uses microscale thermophoresis (MST) as a very fast and highly precise readout to quantify, for example, single tRNA species with a turnaround time of about one hour. We developed MST to quantify the effect of tRNA toxins and of heat stress and RNA modification on single tRNA species. A comparative analysis also revealed significant differences to RNA‐Seq‐based quantification approaches, strongly suggesting a bias due to tRNA modifica…

tRNA stabilityRNA UntranslatedAbsolute quantificationRNA Quantification | Hot PaperComputational biology010402 general chemistry01 natural sciencesCatalysis[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RNA modification540 ChemistryhybridizationComputingMilieux_MISCELLANEOUS010405 organic chemistryChemistryMicroscale thermophoresisCommunicationRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral ChemistryRibosomal RNANon-coding RNAmicroscale thermophoresisCommunications0104 chemical sciencesTissue DifferentiationTransfer RNA570 Life sciences; biologyfluorescenceRNA quantification
researchProduct

Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator

2019

Abstract Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12′s nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar …

TRNA modificationSaccharomyces cerevisiae ProteinsProtein ConformationWobble base pairSaccharomyces cerevisiaeBiologyChaetomiumCrystallography X-Ray03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferATP hydrolysisGeneticsRNA and RNA-protein complexesAnticodonRNA Processing Post-TranscriptionalUridine030304 developmental biologyAdaptor Proteins Signal TransducingAdenosine Triphosphatases0303 health sciencesSelenocysteineRNATRNA bindingCell biologychemistryTransfer RNASelenocysteine incorporationCarrier ProteinsRibosomes030217 neurology & neurosurgery
researchProduct