0000000000061617
AUTHOR
A. Sanchez Lorente
Observation ofHΛ4Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering
At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a ^9B
STATISTICAL DECAY OF EXCITED ΛΛ HYPERNUCLEI AND γ-SPECTROSCOPY AT $\rm \bar P \rm ANDA$
Hypernuclear physics is currently attracting renewed attention. Thanks to the use of stored [Formula: see text] beams, copious production of double Λ hypernuclei is expected at the [Formula: see text] experiment which will enable high precision γ-spectroscopy of such nuclei for the first time. In the present work we have studied the population of particle stable, excited states in double hypernuclei after the capture of a Ξ- within a statistical decay model. In order to check the feasibility of producing and performing γ-spectroscopy of double hypernuclei at [Formula: see text], an event generator based on these calculations has been implemented in the [Formula: see text] simulation framew…
The frontiers of the virtual photons program at MAMI
The most recent results and the future physics program of the high precision electron-scattering experiment at MAMI are briefly outlined. The A1 high-resolution spectrometers facility allows for a unique quality of virtual photon experiments. High precision form factor measurements, few-baryon systems highresolution structure studies and the innovative way in the search of dark photons illustrate the interplay between such diverse fields as precision atomic physics, nuclear astrophysics and astroparticle physics, where hadron physics plays a central and connecting role.
Ground-state binding energy of HΛ4 from high-resolution decay-pion spectroscopy
Abstract A systematic study on the Λ ground state binding energy of hyperhydrogen H Λ 4 measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two indepen…
NEW RESULTS ON NONMESONIC WEAK DECAY OF Lambda HYPERNUCLEI WITH FINUDA
The FINUDA experiment has performed a systematic study of the NonMesonic Weak Decay (NMWD) of Λ hypernuclei analizing all the data collected from 2003 up to 2007. The results of a measurement of the spectra of protons coming from the NMWD of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are the subject of this paper.
Performance of HPGe detectors in high magnetic field
A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EURO…
Unpolarized and polarized elementary kaon electroproduction cross sections measured at MAMI
Present and future research into the electroproduction of kaons plays an im- portant role at Mainz Microtron MAMI. With the Kaos spectrometer employed for kaon detection in the multi-spectrometer facility, cross section measurements of the exclusive p(e;e 0 K + ); 0 reactions at low momentum transfers have been performed. Isobar and Regge-plus-resonance models were compared with the data. These measurements have clearly discriminated between e ective Lagrangian models for photo- and electroproduc- tion of strangeness. New experiments with polarized beam at low four-momentum transfer are addressing the imaginary part of the longitudinal-transverse response in this process, that can be separa…
Recent results on mesonic weak decay of Λ-hypernuclei
The FINUDA experiment has performed a systematic study of mesonic weak decay of p-shell Λ-hypernuclei. Recent results on the mesonic decay spectra and ratios are illustrated and discussed.
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …
Overview of the electromagnetic production of strange mesons at MAMI
Abstract The Mainz Microtron MAMI provides a continuous-wave unpolarized or spin-polarized electron beam with energies up to 1.6 GeV and high degrees of polarization. Electro-production of strange mesons is performed in the multi-spectrometer facility with the Kaos spectrometer for kaon detection and a high-resolution spectrometer for electron detection in plane or out of plane. Differential cross section measurements of exclusive p ( e , e ′ K + ) Λ , Σ 0 reactions at low four-momentum transfers in the nucleonʼs third resonance region have been done, followed by a measurement of the beam helicity asymmetry for p ( e → , e ′ K + ) Λ . These studies are important for the understanding of the…
Resolution, efficiency and stability of HPGe detector operating in a magnetic field at various gamma-ray energies
Abstract The use of High Purity Germanium detectors (HPGe) has been planned in some future experiments of hadronic physics. The crystals will be located close to large spectrometers where the magnetic fringing field will not be negligible and their performances might change. Moreover high precision is required in these experiments. The contribution of magnetic field presence and long term measurements is unique. In this paper the results of systematic measurements of the resolution, stability and efficiency of a crystal operating inside a magnetic field of 0.8 T, using radioactive sources in the energy range from 0.08 to 1.33 MeV, are reported. The measurements have been repeated during sev…
Experimental investigations of the hypernucleus $_Λ^4$H
International audience; Negatively charged pions from two-body decays of stopped _Lambda^4H hypernuclei were studied in 2012 at the Mainz Microtron MAMI, Germany. The momenta of the decay-pions were measured with unprecedented precision by using high-resolution magnetic spectrometers. A challenge of the experiment was the tagging of kaons from associated K^+∧ production off a Be target at very forward angles. In the year 2014, this experiment was continued with a better control of the systematic uncertainties, with better suppression of coincident and random background, improved particle identification, and with higher luminosities. Another key point of the progress was the improvemen…
Future use of silicon photomultipliers for Kaos at MAMI and P¯ANDA at FAIR
A characterisation of scintillating fibres with silicon photomultiplier read-out was performed in view of their possible application in fibre tracking detector systems. Such a concept is being considered for the Kaos spectrometer at the Mainz Microtron MAMI and as a time-of-flight start detector for the hypernuclear physics programme at the PANDA experiment of the FAIR project. Results on particle detection effciency and time resolution are discussed. In summary, the silicon devices are very suitable for the detection of the low light yield from scintillating fibres insofar a trigger scheme is found to cope with the noise rate characteristics.
Strange hadronic physics in electroproduction experiments at the Mainz Microtron
Abstract Present and future research into the electroproduction of strangeness plays an important role at Mainz Microtron MAMI. With the Kaos spectrometer for kaon detection operated in the multi-spectrometer facility first cross section measurements of the exclusive p ( e , e ′ K + ) Λ , Σ 0 reactions at low-momentum transfers have been performed. These measurements have clearly discriminated between effective Lagrangian models for photo- and electroproduction of strangeness. Recently, the Kaos spectrometer was upgraded to a double-arm spectrometer for the measurement of elementary cross sections at very forward scattering angles and for the missing mass spectroscopy of hypernuclear states…
Mesonic and Non-Mesonic Weak Decay of Hypernuclei with FINUDA
Abstract The FINUDA experiment performed a systematic study of both mesonic and non-mesonic weak decay of p - shell Λ-hypernuclei. Recent results on the mesonic decay rates and the non-mesonic decay ratios are illustrated and briefly discussed.
Prospects for hypernuclear physics at Mainz: From KAOS@MAMI to PANDA@FAIR
Abstract At the Mainz Microtron hypernuclei are produced by ( e , e ′ K ) reactions. A dedicated kaon spectrometer located at 0° with respect to the electron beam is used to detect kaons emitted in forward direction thus tagging events involving strangeness production. By measuring the momenta of pions from two body weak decays using high resolution magnetic spectrometers one gains direct access to the ground state masses of the produced hyperfragments. At FAIR the PANDA Collaboration intends to produce double-hypernuclei by numbers with an antiproton beam and study their high resolution γ -spectroscopy thus providing for the first time precise information on the level structure of these nu…
A high power liquid hydrogen target for the Mainz A4 parity violation experiment
We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$\mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a …
New results on mesonic weak decay of p-shell Lambda-hypernuclei
The FINUDA experiment performed a systematic study of the charged mesonic weak decay channel of $p$-shell $\Lambda$-hypernuclei. Negatively charged pion spectra from mesonic decay were measured with magnetic analysis for the first time for ${^{7}_{\Lambda}Li}$, ${^{9}_{\Lambda}Be}$, ${^{11}_{\Lambda}B}$ and ${^{15}_{\Lambda}N}$. The shape of the $\pi^{-}$ spectra was interpreted through a comparison with pion distorted wave calculations that take into account the structure of both hypernucleus and daughter nucleus. Branching ratios $\Gamma_{\pi^{-}}/\Gamma_{tot}$ were derived from the measured spectra and converted to $\pi^{-}$ decay rates $\Gamma_{\pi^{-}}$ by means of known or extrapolate…
A luminosity monitor for the A4 parity violation experiment at MAMI
A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both is required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 hours with electron beam, and the results of its application in the A4 experiment are presented.