0000000000061793
AUTHOR
D. Talukdar
Carbon nanotube field-effect devices with asymmetric electrode configuration by contact geometry
We have studied experimentally the conductive properties of single walled carbon nanotube (SWNT) based field-effect type devices, with different contact geometries at the connecting electrode. The device designs are asymmetric with one end of the SWNT having the metal electrode deposited on top and immersing it, while at the other end, the SWNT is on top of the electrode. The devices were made with either gold or palladium as electrode materials, of which the latter resulted in different behavior of the different contact types. This is argued to be caused by the existence of a thin insulating layer of surface adsorbents on the palladium, possibly Pd5O4, the effect of which is enhanced by th…
Ultra-Low Noise Multiwalled Carbon Nanotube Transistors
We report an experimental noise study of intermediate sized quasi ballistic semiconducting multiwalled carbon nanotube (IS-MWCNT) devices. The noise is two orders of magnitude lower than in singlewalled nanotubes (SWCNTs) and has no length dependence within the studied range. In these channel limited devices with small or negligible Schottky barriers the noise is shown to originate from the intrinsic potential fluctuations of charge traps in the gate dielectric. The gate dependence of normalized noise can be explained better using ballistic the charge noise model rather than diffusive McWhorter’s model. The results indicate that the noise properties of IS-MWCNTs are closer to SWCNTs than th…