0000000000061846

AUTHOR

Jean-pierre Wigneron

showing 32 related works from this author

Calibrating the effective scattering albedo in the SMOS algorithm: some first results

2016

International audience; This study focuses on the calibration of the effective scattering albedo (ω) of vegetation in the soil moisture (SM) retrieval at L-Band. Currently, in the SMOS Level 2 and 3 algorithms, the value of ω is set to 0 for low vegetation and ∼ 0.06 – 0.08 for forests. Different parameterizations of vegetation (in terms of ω values) were tested in this study. The possibility of combining soil roughness and vegetation contributions as a single parameter (“combined” method) leads to an important simplification in the algorithm and was also evaluated here. Following these assumptions, retrieved values of SMOS SM were compared with SM data measured over many in situ sites worl…

L band010504 meteorology & atmospheric sciencesPixelScattering0211 other engineering and technologies[SDU.STU]Sciences of the Universe [physics]/Earth SciencesSingle parameter02 engineering and technologyVegetationSMAP15. Life on landAlbedo01 natural sciencesscattering albedoCalibrationEnvironmental sciencesoil moistureL-MEB modelAlgorithmWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSMOS
researchProduct

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

2015

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

010504 meteorology & atmospheric sciencesMeteorologyGeography Planning and Development0211 other engineering and technologiesData validationlcsh:G1-92202 engineering and technology01 natural sciencesVineyardSoil roughnessFootprintEarth and Planetary Sciences (miscellaneous)Vegetation optical depth14. Life underwaterPrecipitationWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRadiometerHumedad del suelobrightness temperature ELBARA-II L-MEB SMOS SMOS level 3 data soil moisture soil roughness Valencia Anchor Station vegetation optical depth15. Life on landEspesor óptico de la vegetaciónTerm (time)GeographyL-MEB13. Climate actionBrightness temperatureRugosidad del sueloTemperatura de brilloSoil moistureBrightness temperaturelcsh:Geography (General)
researchProduct

Evaluating roughness effects on C-band AMSR-E observations

2014

International audience; The usefulness of microwave remote sensing to retrieve near-surface soil moisture has already been demonstrated in many studies. However, obtaining high quality estimates of soil moisture is influenced by many effects from soil, vegetation and atmosphere; one of the key parameters is surface roughness. This research focusses on a semi-empirical method to evaluate the roughness effects from space borne observations. Global maps of roughness effects are evaluated at C-band from AMSR-E measurements.

010504 meteorology & atmospheric sciencesC band[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiessoil surface roughnessAMSR-E02 engineering and technologySurface finish01 natural sciences13. Climate actionEnvironmental sciencesoil moisture[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2014 IEEE Geoscience and Remote Sensing Symposium
researchProduct

Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements

2019

Soil moisture (SM) is a key state variable in understanding the climate system through its control on the land surface energy, water budget partitioning, and the carbon cycle. Monitoring SM at regional scale has become possible thanks to microwave remote sensing. In the past two decades, several satellites were launched carrying on board either radiometer (passive) or radar (active) or both sensors in different frequency bands with various spatial and temporal resolutions. Soil moisture algorithms are in rapid development and their improvements/revisions are ongoing. The latest SM retrieval products and versions of products that have been recently released are not yet, to our knowledge, com…

TechnologyPassive microwave remote sensing010504 meteorology & atmospheric sciences0208 environmental biotechnologyActive microwave remote sensingReview02 engineering and technology01 natural sciences7. Clean energylaw.inventionRemote SensinglawRadarEvaluationComputingMilieux_MISCELLANEOUSevaluationGeologypassive microwave remote sensingDATA SETSLife Sciences & Biomedicineactive microwave remote sensingSMOSLAND SURFACESreviewSoil ScienceClimate changeEnvironmental Sciences & EcologyLand coverVALIDATIONRETRIEVALSInternational soil moisture networkComputers in Earth SciencesImaging Science & Photographic Technology[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment0105 earth and related environmental sciencesRemote sensingScience & TechnologyRadiometerAMSR-ESMAPScatterometerinternational soil moisture network020801 environmental engineeringCLIMATEASCAT13. Climate actionSoil waterEnvironmental scienceSpatial variabilitySatelliteSoil moisturesoil moistureEnvironmental SciencesL-BANDRemote Sensing of Environment
researchProduct

Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series

2011

International audience; In mountain forest ecosystems where elevation gradients are prominent, temperature gradient-based phonological variability can be high. However, there are few studies that assess the capability of remote sensing observations to monitor ecosystem phenology along elevation gradients, despite their relevance under climate change. We investigated the potential of medium resolution remotely sensed data to monitor the elevation variations in the seasonal dynamics of a temperate deciduous broadleaf forested ecosystem. Further, we explored the impact of elevation on the onset of spring leafing. This study was based on the analysis of multi-annual time-series of VEGETATION da…

010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil Science02 engineering and technologyLand coverSPRING PHENOLOGYPhonologyTemperate deciduous forest01 natural sciencesPLANT PHENOLOGYGLOBAL CHANGEComputers in Earth SciencesBeechVEGETATION PHENOLOGY021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingCLIMATE-CHANGEbiologyPhenologyElevationLeaf unfoldingGeologyVegetation15. Life on landbiology.organism_classificationDeciduous forestNOAA-AVHRRDeciduousMODISTemporal unmixingHIGH-LATITUDES13. Climate actionElevation[SDE]Environmental SciencesSATELLITE DATAEnvironmental scienceCommon spatial patternVEGETATIONPerpendicular vegetation indexREMOTE-SENSING DATARemote Sensing of Environment
researchProduct

First Retrievals of ASCAT-IB VOD (Vegetation Optical Depth) at Global Scale

2021

Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better …

Vegetation optical depth010504 meteorology & atmospheric sciencesvegetation mapping0211 other engineering and technologiesScale (descriptive set theory)02 engineering and technology01 natural sciencesCombinatoricsremote sensingvegetationoptical sensorC-bandComputingMilieux_MISCELLANEOUSattenuation021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsprediction algorithmbiomassOrder (ring theory)15. Life on landPrediction algorithmsASCAT13. Climate action[SDE]Environmental SciencesVegetation optical DepthScatterometerBiomedical optical imagingRadar Measurement
researchProduct

A combined optical-microwave method to retrieve soil moisture over vegetated areas

2011

A simple approach for correcting for the effect of vegetation in the estimation of the surface soil moisture (wS) from L-band passive microwave observations is presented in this study. The approach is based on semi-empirical relationships between soil moisture and the polarized reflectivity including the effect of the vegetation optical depth which is parameterized as a function of the normalized vegetation difference index (NDVI). The method was tested against in situ measurements collected over a grass site from 2004 to 2007 (SMOSREX experiment). Two polarizations (horizontal/vertical) and five incidence angles (20◦, 30◦, 40◦, 50◦, and 60◦) were considered in the analysis. The best wS est…

Vegetation optical depthL band010504 meteorology & atmospheric sciencesNDVItélédétection0211 other engineering and technologiesSoil science02 engineering and technologyMicrowave methodsurface temperature01 natural sciencesNormalized Difference Vegetation Index[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsNDVI;LAI;LEAF AREA INDEX;SURFACE TEMPERATURE;SOIL MOISTURE;L-BAND medicineTraitement du signal et de l'imagenormalized vegetation difference index (NDVI)Electrical and Electronic EngineeringWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSignal and Image processingsurface temperature.soil moisture (SM)Enhanced vegetation index15. Life on landLAIL-bandSOIL MOISTUREGeneral Earth and Planetary SciencesEnvironmental sciencemicrowave radiometrymedicine.symptomLEAF AREA INDEXVegetation (pathology)[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingMicrowave
researchProduct

The CoSMOS L-band experiment in Southeast Australia

2007

The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order to validate the L-band emission model that will be used by the SMOS (Soil Moisture and Ocean Salinity) ground segment processor. In addition, the campaign was designed to investigate open questions including the Sun-glint effect over land, the application of polarimetric measurements over land, and to clarify the importance of dew and interception for soil moisture retrievals. This paper summarises the …

Radiometer010504 meteorology & atmospheric sciencesMeteorologyPASSIVE MICROWAVES[SDV]Life Sciences [q-bio]BRIGHTNESS TEMPERATURE0211 other engineering and technologiesL-BAND EMISSION MODEL02 engineering and technology15. Life on land01 natural sciencesSalinity13. Climate action[SDE]Environmental SciencesSOIL MOISTUREEnvironmental scienceRadiometryDewGround segmentInterceptionWater contentCosmosComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Evaluating the impact of roughness in soil moisture and optical thickness retrievals over the VAS area

2014

International audience

Valencia Anchor Station[SDE.MCG]Environmental Sciences/Global ChangesL - MEB modelSoil scienceSurface finishELBARA - IIsoil roughnessEnvironmental sciencesoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSRemote sensingSMOS
researchProduct

SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product

2017

© 2017 by the authors. The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère). One of the main go…

environmental_sciencesL bandVegetation optical depth010504 meteorology & atmospheric sciencesNDVI[SDV]Life Sciences [q-bio]Science0211 other engineering and technologiesWeather forecasting0207 environmental engineeringSoil science02 engineering and technologycomputer.software_genre01 natural sciencesSMOS; L-band; Level 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth; MODIS; NDVINormalized Difference Vegetation IndexECMWFvegetation optical depthtempératurehumidité du solluminosity14. Life underwater020701 environmental engineeringWater content021101 geological & geomatics engineeringRemote sensing0105 earth and related environmental sciencessalinité des océansQBiosphereluminositéVegetationAlbedoL-bandSpectroradiometerMODIS13. Climate actionBrightness temperatureProduct (mathematics)General Earth and Planetary SciencesEnvironmental sciencesoil moistureSMOS;L-band;level 3;ECMWF;SMOS-IC;soil moisture;vegetation optical depth;MODIS;NDVISMOS-ICcomputerLevel 3SMOSRemote Sensing
researchProduct

First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region

2012

Abstract The SMOS (Soil Moisture and Ocean Salinity) mission was launched on November 2, 2009. Over the land surfaces, simultaneous retrievals of surface soil moisture (SM) and vegetation characteristics made from the multi-angular and dual polarization SMOS observations are now available from Level-2 (L2) products delivered by the European Space Agency (ESA). Therefore, first analyses evaluating the SMOS observations in terms of Brightness Temperatures (TB) and L2 products (SM and vegetation optical depth TAU) can be carried out over several calibration/validation (cal/val) sites selected by ESA over all continents. This study is based on SMOS observations and in situ measurements carried …

Mediterranean climate010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil Science550 - Earth sciences02 engineering and technology01 natural sciencesVineyardNormalized Difference Vegetation Index14. Life underwaterComputers in Earth SciencesWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerGeology15. Life on land13. Climate actionBrightness temperatureSoil water[SDE]Environmental SciencesEnvironmental sciencesoil moisture; optical depth; retrievals; mediterranean environment; level 2 algorithm; brightness temperature; vineyards; soil; NDVI; MODIS;Moderate-resolution imaging spectroradiometerSMOS
researchProduct

CAROLS campaigns 2009: First Results

2010

International audience; The CAROLS, L band radiometer, is built and designed as a copy of EMIRAD II radiometer of DTU team. It is a Correlation radiometer with direct sampling and fully polarimetric (i.e 4 Stockes). It will be used in conjunction with other airborne instruments (in particular the C-Band scatterometer (STORM) and IEEEC GPS system, Infrared CIMEL radiometer and one visible camera), in coordination with in situ field campaigns for SMOS CAL/VAL. The instruments are implemented on board the French research airplane ATR42. A scientific campaign with thirteen flights is realized over south-western France, Valencia site and Bay of Biscay (Atlantic Ocean) in spring 2009. In order to…

business.product_category010504 meteorology & atmospheric sciencesMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologies02 engineering and technology01 natural scienceslaw.inventionAirplane[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessinglawRadar[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerbusiness.industryStormScatterometerSea surface temperatureGeographyGlobal Positioning SystemRadiometrybusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station

2010

16 páginas, 9 figuras, 5 tablas.

010504 meteorology & atmospheric sciencestélédétectionMISSION SMOS0211 other engineering and technologiesSpaceespagne02 engineering and technologylcsh:Technology01 natural sciencesValidationTraitement du signal et de l'imagelcsh:Environmental technology. Sanitary engineering020701 environmental engineeringWater contentlcsh:Environmental sciencesComputingMilieux_MISCELLANEOUSlcsh:GE1-350InclusionRetrievalMoistureModelling soil moistureSignal and Image processinglcsh:Geography. Anthropology. RecreationRemote sensingDISPOSITIF EXPERIMENTAL; MISSION SMOSProductseurope[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOS[SDE.MCG]Environmental Sciences/Global Changessatellite0207 environmental engineeringGrowing seasonParameterizationSpatial distributionlcsh:TD1-1066SchemeHapexspectroradiomètre14. Life underwater[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerlcsh:TAMSR-Epays méditerranéenSalinityERS scatterometerlcsh:G13. Climate actionDISPOSITIF EXPERIMENTALSoil waterEnvironmental scienceRadiometry
researchProduct

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

2014

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiesSoil Science02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPhysics::Geophysics14. Life underwaterComputers in Earth SciencesTime series021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingAtmospheric soundingValencia Anchor StationRadiometerGeologyInversion (meteorology)SMAP15. Life on landBrightness temperatureSoil waterEnvironmental scienceRadiometrySoil moisture retrievalELBARA[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSRemote Sensing of Environment
researchProduct

Two-year global simulation of L-band brightness temperatures over land

2003

International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…

010504 meteorology & atmospheric sciences0211 other engineering and technologiesmodeling02 engineering and technologyLand coverVegetation[INFO.INFO-IA]Computer Science [cs]/Computer Aided EngineeringSnow01 natural sciencesPhysics::GeophysicsBrightness temperatureglobal scaleSoil waterRadiative transferGeneral Earth and Planetary SciencesEnvironmental scienceRadiometryL-band radiometryElectrical and Electronic Engineeringsoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

The EuroSTARRS airborne campaign in support of the SMOS mission: first results over land surfaces

2004

A number of experiments using ground-based and airborne sensors have shown the high potential of L-band passive microwave radiometry for estimating and monitoring surface soil moisture. This has led to the Soil Moisture and Ocean Salinity (SMOS) mission, a European Space Agency (ESA) Earth Explorer Opportunity mission. SMOS has the objective to observe soil moisture over land and sea surface salinity over sea, both key parameters for atmospheric, oceanographic and hydrological predictive models. In preparation of SMOS, the EuroSTARRS airborne campaign was carried out in November 2001. Multi-angular measurements of the surface brightness temperature at L-band (1.4 GHz) at vertical polarizati…

[SPI.OTHER]Engineering Sciences [physics]/Other010504 meteorology & atmospheric sciencesMeteorology0211 other engineering and technologies02 engineering and technology01 natural sciences14. Life underwaterSea surface salinityWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerSurface emission[SPI.OTHER] Engineering Sciences [physics]/OtherSTARRSSURFACE DU SOLSettore ING-INF/02 - Campi ElettromagneticiSalinity13. Climate actionBrightness temperatureGeneral Earth and Planetary SciencesEnvironmental scienceRadiometryMicrowave radiometry
researchProduct

Analysis of the radar vegetation index and assessment of potential for improvement

2018

The Radar Vegetation Index (RVI) is widely applied to indicate vegetation cover. The index includes the backscattering intensities of co- and cross-polarization that do not only contain information coming from vegetation scattering at longer wavelength (L-band), but also from the soil underneath. A forward modelling approach using active and passive microwave-derived parameters to obtain the scattering contribution of the soil is pursued. The idea of this research study is a subtraction of the attenuated soil scattering contribution from the measured backscattering intensities, to provide a clean vegetation-based solution, called improved RVI (RVII). For latter analysis, the vegetation volu…

010504 meteorology & atmospheric sciencesmicrowave[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil science02 engineering and technology01 natural scienceslaw.inventionVegetation coverlawmedicineRange (statistics)RadarComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRadarVegetationScatteringSMAP15. Life on landWavelength[SDE]Environmental SciencesVegetation water contentEnvironmental scienceactive-passive sensingmedicine.symptomVegetation IndexVegetation (pathology)Cartography
researchProduct

Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe

2015

International audience; This paper focuses on a new approach to account for soil roughness effects in the retrieval of soil moisture (SM) at L-band in the framework of the SMOS (Soil Moisture and Ocean Salinity) mission: the Simplified Roughness Parameterization (SRP). While the classical retrieval approach considers SM and τ nad (vegetation optical depth) as retrieved parameters, this approach is based on the retrieval of SM and the TR parameter combining τ nad and soil roughness (TR τ nad + Hr /2). Different roughness parameterizations were tested to find the best correlation (R), bias and unbiased RMSE (ubRMSE) when comparing homogeneous retrievals of SM and in situ SM measurements carri…

L bandVegetation optical depth010504 meteorology & atmospheric sciencesMean squared errorvegetation mapping0211 other engineering and technologiesSampling (statistics)[SDU.STU]Sciences of the Universe [physics]/Earth SciencesSoil science02 engineering and technologySurface finish01 natural sciencesL-bandHomogeneousEnvironmental sciencesoil measurementsmicrowave radiometrysoil moistureWater contentSoil roughness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingmathematical model021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

The SMOS mediterranean ecosystem L-band characterisation experiment (MELBEX) over natural shrubs

2010

10 páginas, 5 figuras, 7 tablas.

Mediterranean climate[SPI.OTHER]Engineering Sciences [physics]/Other010504 meteorology & atmospheric sciencesBiomeved/biology.organism_classification_rank.speciesMISSION SMOSMicrowave radiometry0211 other engineering and technologiesRock fractionSoil Science02 engineering and technologyL-MEB MODEL7. Clean energy01 natural sciencesShrubMICROWAVE RADIOMETRY14. Life underwaterComputers in Earth SciencesWater contentOptical depthComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerved/biologyBiosphereGeologyVegetation15. Life on landL-bandL-MEB13. Climate actionSOIL MOISTUREEnvironmental scienceSoil moistureROCK FRACTION[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSL-BAND
researchProduct

Alternate Inrae-Bordeaux VOD Indices from SMOS, AMSR2 and ASCAT: Overview of Recent Developments

2021

International audience; Vegetation optical depth (VOD) is used to parameterize microwave extinction effects within the vegetation layer. Many studies have showed VOD presents interesting features for applications in ecology, water and carbon cycles, and VOD is only marginally impacted by signal disturbances and artefacts from atmospheric, cloud and sun illumination effects. As soil moisture (and not VOD) has generally been the main factor of interest in retrieval studies from microwave observations, there is room for improvement in the retrieved VOD products. In this context, INRAE Bordeaux recently developed alternate VOD products from the SMOS, AMSR2 and ASCAT sensors, by addressing speci…

Spatial correlationVegetation optical depth[SDE.IE]Environmental Sciences/Environmental EngineeringEnvironmental scienceContext (language use)VegetationRemote sensingRadiometryMoistureRemote sensing2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

2017

Abstract This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (H R , and N Rp , p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and H R  = 0.1, whereas values of ω = 0.06 − 0.08 and H R  = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, H R and N Rp , p = H,V) were tested in this study, tre…

biosphèreL band010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologieseffective scattering albedo02 engineering and technologyLand coverManagement Monitoring Policy and Law01 natural sciencestélédétection microondesCalibrationhumidité du sol14. Life underwaterComputers in Earth SciencesWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingrugosité de surfaceGlobal and Planetary Changesalinité des océansScatteringVegetation15. Life on landAlbedoL-bandGeographysoil roughnessalbédosoil moistureSoil roughnessSMOSrugosité du sol
researchProduct

Retrievals of soil moisture and optical depth from CAROLS

2011

International audience; We propose in this paper to evaluate a method to retrieve soil moisture (SM) and vegetation optical thickness, in areas of unknown roughness and unknown vegetation water content in view of operational applications, by using airborne Tb measurements acquired in South-West of France. Results are compared to in situ measurements, manual and automatic ones included in SMOSmania network, in the South-West of France.

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]télédétection[SDE.MCG]Environmental Sciences/Global ChangesSignal and Image processingmicroondetempérature de brillance RADIOMETRE;SATELLITE SMOSvol instrumentemodèle de transfert radiatifTraitement du signal et de l'imagehumidité du solRADIOMETRESATELLITE SMOSMilieux et Changements globaux[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUS
researchProduct

Interannual Variability of Biomass (SMOS Vegetation Optical Depth) Over the Contiguous United States

2021

Interannual variability in biomass represented by SMOS vegetation optical depth (VOD) and precipitation was assessed over the Contiguous United States. The greatest interannual variability in both VOD and precipitation occurred in shrubs and herbaceous (grasslands), with forests the least variable. At a continental scale, VOD was strongly correlated with annual precipitation. Results showed a significant correlation coefficient (∼ 0.93) between interannual variability of precipitation and biomass, indicating that the interannual variability of precipitation could be a good predictor of the interannual variability of biomass.

Biomass (ecology)Vegetation optical depthCorrelation coefficientfood and beveragesEnvironmental sciencePrecipitationVegetationHerbaceous plantAtmospheric sciencescomplex mixtures2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

2015

Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…

010504 meteorology & atmospheric sciencestélédétectionScience0211 other engineering and technologiesWeather forecasting[SDU.STU]Sciences of the Universe [physics]/Earth SciencesElectromagnétismesoil surface roughness02 engineering and technologySurface finishcomputer.software_genredonnée satellite01 natural sciencesSciences de la TerreNormalized Difference Vegetation Indexsoil moisture;soil surface roughness;AMSR-EElectromagnetismEmissivitySurface roughnessTraitement du signal et de l'image14. Life underwaterWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometercapteur smosQSignal and Image processingradiométrie microondesVegetationAMSR-E15. Life on land[SPI.ELEC]Engineering Sciences [physics]/ElectromagnetismEarth SciencesGeneral Earth and Planetary SciencesEnvironmental sciencesoil moisturecomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingRemote Sensing
researchProduct

SMOS-IC : a revised SMOS product based on a new effective scattering albedo and soil roughness parameterization

2017

International audience; This study presents a new SMOS (Soil Moisture and Ocean Salinity) soil moisture (SM) product based on a different scattering albedo and soil roughness parameterization: the SMOS-IC (SMOS INRA-CESBIO) data set. In this study, several parameterizations of the vegetation and soil roughness parameters (co, H-R and N-RP, P = H, V) were tested and the retrieved SM was compared against in situ observations obtained from the International Soil Moisture Network (ISMN). Firstly, values of omega = 0.10, H-R = 0.4 and N-RP = -1 (P = H, V) were found globally. Secondly, a calibration of these parameters was obtained for the different land cover categories of the International Geo…

010504 meteorology & atmospheric sciencesScattering[SDV]Life Sciences [q-bio]0211 other engineering and technologies02 engineering and technologyLand coverVegetation15. Life on landAlbedoAtmospheric sciences01 natural sciences13. Climate actionProduct (mathematics)[SDE]Environmental SciencesCalibrationEnvironmental scienceWater contentSoil roughness021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field

2015

Abstract The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and vegetation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for soil roughness effects (…

BrightnessL bandRadiometerMean squared error[SDE.MCG]Environmental Sciences/Global ChangesSoil ScienceGeology15. Life on landL-bandAtmospheric radiative transfer codesL-MEBvegetationCalibrationsoil roughnessRadiometryEnvironmental sciencemicrowave radiometryComputers in Earth Sciencessoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSRemote sensingSMOS
researchProduct

L-Band radiative properties of vine vegetation at the MELBEX III SMOS Cal/Val Site

2012

Radiative properties at 1.4 GHz of vine vegetation are investigated by measuring brightness temperatures with the ETH L-band Radiometer II (ELBARA II) operated on a tower at the Mediterranean Ecosystem L-band Characterisation Experiment III (MELBEX III) field site in Spain. To this aim, experiments with and without a reflecting foil placed under the vines were performed for the vegetation winter and summer states, respectively, to provide prevailingly information on vegetation transmissivities. The resulting parameters, which can be considered as "ground truth" for the MELBEX III vineyard, were retrieved from brightness temperature at horizontal and vertical polarization measured at observa…

Mediterranean climateBrightness010504 meteorology & atmospheric sciencesvegetation mapping0211 other engineering and technologiesMicrowave radiometry550 - Earth sciences02 engineering and technologyAtmospheric sciences01 natural sciencesVineyard[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsRadiative transferElectrical and Electronic Engineering021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometervegetation mapping.Vegetation15. Life on landradiative transferBrightness temperatureSoil waterGeneral Earth and Planetary SciencesEnvironmental sciencesoil moisture
researchProduct

Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA

2014

The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular, dual-polarised brightness temperatures at 1.4 GHz, from which global soil moisture and vegetation optical depth (tau) products are retrieved. This paper presents a study of SMOS' tau product in 2010 and 2011 for crop zones of the USA. Retrieved tau values for 504 crop nodes were compared to optical/IR vegetation indices from the MODES (Moderate Resolution Imaging Spectroradiometer) satellite sensor, including the Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVE), Leaf Area Index (LAI), and a Normalised Difference Water Index (NOW!) product. tau values were observed to increase during the…

2. Zero hunger010504 meteorology & atmospheric sciences0211 other engineering and technologiesSoil ScienceGrowing seasonGeology02 engineering and technologyVegetationEnhanced vegetation index01 natural sciencesNormalized Difference Vegetation Indexvegetation optical depthLinear regressionEnvironmental scienceL-band radiometryModerate-resolution imaging spectroradiometerComputers in Earth SciencesLeaf area indexoptical vegetation indices[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingWater contentSMOS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

ALiBi : un exemple de modèle de transferts sol-végétation-atmosphère

1995

National audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct

Global Scale IB AMSR2 Vegetation Optical Depth at X-Band

2021

Vegetation Optical Depth (VOD) plays an increasingly important role in studying global carbon, water and energy transformation [1], [2]. This study explores the performance of the X-MEB (X-band microwave emission of the biosphere) model at global scale. Similar to the L-MEB model, the X-MEB model, built by INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement) Bordeaux, aims to retrieve VOD (referred to as IB X-VOD) at X-band. To avoid the ill-posed problem caused by retrieving two parameters of interest (soil moisture (SM) and VOD) from mono-angular and dual-polarized observations (AMSR2), which are strongly correlated, we used the ERA5 SM product as a…

Biomass (ecology)Scale (ratio)BiosphereEnvironmental scienceVegetationLeaf area indexAlbedoAtmospheric sciencesWater contentNormalized Difference Vegetation Index2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

2011

The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer--STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic O…

analyse de donnéesL band010504 meteorology & atmospheric sciencesMeteorologytélédétection0211 other engineering and technologiesPolarimetry02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistry RADIOMETER;CAROLS;L-BAND;MISSION SMOS;OCEAN SALINITY;SOIL MOISTURE; MESURE AEROPORTEECAROLSArticleAnalytical Chemistry[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/Ecosystemslcsh:TP1-1185ocean salinityElectrical and Electronic EngineeringInstrumentation021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerbusiness.industryConjunction (astronomy)Ocean salinityL bandradiometerL band radiometerAtomic and Molecular Physics and OpticsOn boardL-bandAutre (Sciences de l'ingénieur)Global Positioning SystemEnvironmental scienceSatelliteRadiometerSoil moisturesoil moisturebusinessSMOS
researchProduct

A coupled model to simulate spectral reflectances, thermal infrared emission and microwave emission of a vegetation canopy

1993

National audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct