6533b837fe1ef96bd12a345f
RESEARCH PRODUCT
Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe
Jean-pierre WigneronRoberto Fernandez-moranAli MahmoodiAmen Al-yaariA. Coll-pajaronErnesto Lopez-baezaYann KerrPhilippe RichaumeS. BircherMarie Parrenssubject
L bandVegetation optical depth010504 meteorology & atmospheric sciencesMean squared errorvegetation mapping0211 other engineering and technologiesSampling (statistics)[SDU.STU]Sciences of the Universe [physics]/Earth SciencesSoil science02 engineering and technologySurface finish01 natural sciencesL-bandHomogeneousEnvironmental sciencesoil measurementsmicrowave radiometrysoil moistureWater contentSoil roughness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingmathematical model021101 geological & geomatics engineering0105 earth and related environmental sciencesdescription
International audience; This paper focuses on a new approach to account for soil roughness effects in the retrieval of soil moisture (SM) at L-band in the framework of the SMOS (Soil Moisture and Ocean Salinity) mission: the Simplified Roughness Parameterization (SRP). While the classical retrieval approach considers SM and τ nad (vegetation optical depth) as retrieved parameters, this approach is based on the retrieval of SM and the TR parameter combining τ nad and soil roughness (TR τ nad + Hr /2). Different roughness parameterizations were tested to find the best correlation (R), bias and unbiased RMSE (ubRMSE) when comparing homogeneous retrievals of SM and in situ SM measurements carried out at the VAS (Valencia Anchor Station) vineyard field. The highest R (0.68) and lowest ubRMSE (0.056 m3 m-3) were found using the SRP method. Using the SMOS observations comparisons against several SM networks were also made: AACES, SCAN, watersheds and SMOSMANIA. SM was retrieved over all these stations. The SRP and another similar approach (SRP2) improved the averaged ubRMSE, while the SRP2 method leaded to higher correlation values (R). A global underestimation of SM was noticed, which may be linked to the differences in the sampling depths of the L-band observations ( ~ 0-3 cm for both Elbara-II and SMOS) and of the in situ measurements ( ~ 0-5 cm).
year | journal | country | edition | language |
---|---|---|---|---|
2015-07-26 |