0000000000061837

AUTHOR

Ernesto Lopez-baeza

Calibrating the effective scattering albedo in the SMOS algorithm: some first results

International audience; This study focuses on the calibration of the effective scattering albedo (ω) of vegetation in the soil moisture (SM) retrieval at L-Band. Currently, in the SMOS Level 2 and 3 algorithms, the value of ω is set to 0 for low vegetation and ∼ 0.06 – 0.08 for forests. Different parameterizations of vegetation (in terms of ω values) were tested in this study. The possibility of combining soil roughness and vegetation contributions as a single parameter (“combined” method) leads to an important simplification in the algorithm and was also evaluated here. Following these assumptions, retrieved values of SMOS SM were compared with SM data measured over many in situ sites worl…

research product

Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

International audience; The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil m…

research product

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

research product

The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art

A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day. It is shown that in the temperature interval between ...

research product

Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites

This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active–Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture retrievals using radar observations have been challenging in the past due to complicating factors of surface roughness and vegetation scattering. Here, physically based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic vegetation. Compared with the …

research product

Surface soil moisture retrieval using L-band SMAP SAR data and its validation

Surface soil moisture was retrieved globally by systematically correcting for the effects of vegetation and soil surface roughness. The retrieval is enabled by employing physical-models of radar forward scattering for individual vegetation types to account for vegetation scattering and absorption, and by constraining the surface roughness effect using time-series observations. The L-band SMAP multi-polarized (HH/VV/HV) σ° data acquired globally every three days were used from mid-April to early July, 2015. Assessment was conducted over 13 rigorously-chosen core validation sites covering a wide range of biomass types, biomass amount, and soil conditions. The soil moisture retrieval reached a…

research product

An assessment of the differences between spatial resolution and grid size for the SMAP enhanced soil moisture product over homogeneous sites

Abstract Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled to a fixed Earth grid that facilitates their use in applications. In many cases the grid size is finer than the actual spatial resolution of the observation, and often this difference is not well understood by the user. Here, this issue was examined for the Soil Moisture Active Passive (SMAP) enhanced version of the passive-based soil moisture product, which has a grid size of 9-km and …

research product

The CoSMOS L-band experiment in Southeast Australia

The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order to validate the L-band emission model that will be used by the SMOS (Soil Moisture and Ocean Salinity) ground segment processor. In addition, the campaign was designed to investigate open questions including the Sun-glint effect over land, the application of polarimetric measurements over land, and to clarify the importance of dew and interception for soil moisture retrievals. This paper summarises the …

research product

Validation of SMAP surface soil moisture products with core validation sites

Abstract The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations. The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distributio…

research product

Evaluating the impact of roughness in soil moisture and optical thickness retrievals over the VAS area

International audience

research product

SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product

© 2017 by the authors. The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère). One of the main go…

research product

The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions

Abstract The NASA Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The spacecraft was to provide high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining for the first time L-band radiometer and radar observations. On July 7th, 2015, a component of the SMAP radar failed and the radar ceased operation. However, before this occurred the mission was able to collect and process ~2.5 months of the SMAP high-resolution active-passive soil moisture data (L2SMAP) that coincided with the Northern Hemisphere's vegetation green-up and crop growth season. In this study, we evaluate the SMAP high-resolution soil moisture product deri…

research product

Potential of Automated Digital Hemispherical Photography and Wireless Quantum Sensors for Routine Canopy Monitoring and Satellite Product Validation

To better characterize the temporal dynamics of vegetation biophysical variables, a variety of automated in situ measurement techniques have been developed in recent years. In this study, we investigated automated digital hemispherical photography (DHP) and wireless quantum sensors, which were installed at two sites under the Copernicus Ground Based Observations for Validation (GBOV) project. Daily estimates of plant area index (PAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) were obtained, which realistically described expected vegetation dynamics. Good correspondence with manual DHP and LAI-2000 data (RMSE = 0.39 to 0.90 for PAI, RMSE = 0.07 for FAPAR) provid…

research product

Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station

In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on the intercomparison of soil moisture monitoring from Global Navigation Satellite System Reflectometry (GNSS-R) signals and passive L-band microwave radiometer observations at the Valencia Anchor Station is introduced. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and a dual-pol down-looking antenna for receiving LHCP (left-hand circular polarization) and RHCP (right-hand circular polarization) reflected signals from the soil surface. Data were collected from the three different antennas through the two channels of Oceanpal GNSS-R receiver and, in addition, calibration …

research product

Soil moisture modelling of a SMOS pixel: interest of using the PERSIANN database over the Valencia Anchor Station

In the framework of Soil Moisture and Ocean Salinity (SMOS) Calibration/Validation (Cal/Val) activities, this study addresses the use of the PERSIANN-CCS<sup>1</sup>database in hydrological applications to accurately simulate a whole SMOS pixel by representing the spatial and temporal heterogeneity of the soil moisture fields over a wide area (50×50 km<sup>2</sup>). The study focuses on the Valencia Anchor Station (VAS) experimental site, in Spain, which is one of the main SMOS Cal/Val sites in Europe. <br><br> A faithful representation of the soil moisture distribution at SMOS pixel scale (50×50 km<sup>2</sup>) requires an accurate estimation…

research product

Automated Soil Moisture Monitoring Wireless Sensor Network for Long-Term Cal/Val Applications

The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, in campaigns of calibration and validation of the space mission SMOS (Soil Moisture and Ocean Salinity), but the system is easily extensible to monitor other climatic or environmental variables, as well as to other regions of ecological interest. The network consists of a number of automatic measurement stations, strategically placed following soil homogeneity and land uses criteria. Every station includes acquisition, conditioning and communication systems. The electronics are batt…

research product

Narrow-band to broad-band conversion for Meteosat-visiible channel and broad-band albedo using both AVHRR-1 and -2 channels

Abstract Satellite-derived broad-band albedo offers a useful tool for monitoring surface conditions. Given the limited wavelength window of most satellite radiometers, satellite albedo studies need to define narrow-band to a broad-band transformations. Signals from the AVHRR channels on board the NOAA-11 satellite, the Meteosat visible channel and a rectangular spectral band from 0-3 to 2.5 μm were simulated for a set of 20 representative land surfaces. The radiative transfer code described in Tanre et al. (1990) was used to obtain top of the atmosphere radiances. The derived signals were then correlated to predict broadband albedo and the Meteosal response via the two AVHRR signals. The re…

research product

Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station

16 páginas, 9 figuras, 5 tablas.

research product

Under The Background Influence (UTBI): 2006 Opportunity for Flight

research product

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

research product

Two-year global simulation of L-band brightness temperatures over land

International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…

research product

Intercomparison of soil moisture retrieved from GNSS-R and passive L-band radiometry at the Valencia Anchor Station

In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on soil moisture monitoring by Global Navigation Satellite System Reflected signals(GNSS-R) at the Valencia Anchor Station is introduced.

research product

The EuroSTARRS airborne campaign in support of the SMOS mission: first results over land surfaces

A number of experiments using ground-based and airborne sensors have shown the high potential of L-band passive microwave radiometry for estimating and monitoring surface soil moisture. This has led to the Soil Moisture and Ocean Salinity (SMOS) mission, a European Space Agency (ESA) Earth Explorer Opportunity mission. SMOS has the objective to observe soil moisture over land and sea surface salinity over sea, both key parameters for atmospheric, oceanographic and hydrological predictive models. In preparation of SMOS, the EuroSTARRS airborne campaign was carried out in November 2001. Multi-angular measurements of the surface brightness temperature at L-band (1.4 GHz) at vertical polarizati…

research product

Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe

International audience; This paper focuses on a new approach to account for soil roughness effects in the retrieval of soil moisture (SM) at L-band in the framework of the SMOS (Soil Moisture and Ocean Salinity) mission: the Simplified Roughness Parameterization (SRP). While the classical retrieval approach considers SM and τ nad (vegetation optical depth) as retrieved parameters, this approach is based on the retrieval of SM and the TR parameter combining τ nad and soil roughness (TR τ nad + Hr /2). Different roughness parameterizations were tested to find the best correlation (R), bias and unbiased RMSE (ubRMSE) when comparing homogeneous retrievals of SM and in situ SM measurements carri…

research product

Comparison of top of the atmosphere GERB measured radiances with independent radiative transfer simulations obtained at the Valencia Anchor Station area

The purpose of this work is to compare top of the atmosphere (TOA) radiances as measured by the Geostationary Earth Radiation Budget (GERB) instrument on board the METEOSAT-8 (METEOSAT Second Generation) satellite to equivalent independent radiances obtained from radiative transfer simulations performed using surface and atmospheric measured parameters gathered during the GERB Surface Ground Validation Campaign at the Valencia Anchor Station (VAS) reference area in February 2004. In this paper we try to extend the methodology previously developed and tested for the NASA Clouds and the Earth's Radiant Energy System (CERES) instrument in the framework of the SEVIRI and GERB Cal/val Area for L…

research product

A comparative analysis of different spatial sampling schemes: Modelling of SSRB data

Low spatial resolution satellite sensors provide information over relatively large targets with typical pixel resolutions of hundreds of km2. However, the spatial scales of ground measurements are usually much smaller. Such differences in spatial scales makes the interpretation of comparisons between quantities derived from low resolution sensors and ground measurements particularly difficult. It also highlights the importance of developing appropriate sampling strategies when designing ground campaigns for validation studies of low resolution sensors. We make use of statistical modelling of high resolution surface shortwave radiation budget (SSRB) data to look into this problem. A spatial …

research product

A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

Abstract This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (H R , and N Rp , p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and H R  = 0.1, whereas values of ω = 0.06 − 0.08 and H R  = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, H R and N Rp , p = H,V) were tested in this study, tre…

research product

Validation of the Sentinel-3 Ocean and Land Colour Instrument (OLCI) Terrestrial Chlorophyll Index (OTCI): Synergetic Exploitation of the Sentinel-2 Missions

Continuity to the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) will be provided by the Sentinel-3 Ocean and Land Colour Instrument (OLCI), and to ensure its utility in a wide range of operational applications, validation efforts are required. In the past, these activities have been constrained by the need for costly airborne hyperspectral data acquisition, but the Sentinel-2 Multispectral Instrument (MSI) now offers a promising alternative. In this paper, we explore the synergetic use of Sentinel-2 MSI data for validation of the Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) over the Valencia Anchor Station, a large agricultural site in the Valen…

research product

SMOS REFLEX 2003: L-band emissivity characterization of vineyards

The goal of the Soil Moisture and Ocean Salinity mission over land is to infer surface soil moisture from multiangular L-band radiometric measurements. As the canopy affects the microwave emission of land, it is necessary to characterize different vegetation layers. This paper presents the Reference Pixel L-Band Experiment (REFLEX), carried out in June-July 2003 at the Vale/spl grave/ncia Anchor Station, Spain, to study the effects of grapevines on the soil emission and on the soil moisture retrieval. A wide range of soil moisture (SM), from saturated to completely dry soil, was measured with the Universitat Polite/spl grave/cnica de Catalunya's L-band Automatic Radiometer (LAURA). Concurre…

research product

SMOS-IC : a revised SMOS product based on a new effective scattering albedo and soil roughness parameterization

International audience; This study presents a new SMOS (Soil Moisture and Ocean Salinity) soil moisture (SM) product based on a different scattering albedo and soil roughness parameterization: the SMOS-IC (SMOS INRA-CESBIO) data set. In this study, several parameterizations of the vegetation and soil roughness parameters (co, H-R and N-RP, P = H, V) were tested and the retrieved SM was compared against in situ observations obtained from the International Soil Moisture Network (ISMN). Firstly, values of omega = 0.10, H-R = 0.4 and N-RP = -1 (P = H, V) were found globally. Secondly, a calibration of these parameters was obtained for the different land cover categories of the International Geo…

research product

Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field

Abstract The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and vegetation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for soil roughness effects (…

research product

Spatiotemporal modeling and prediction of solar radiation

[1] The radiation budget in the Earth-atmosphere system is what drives Earth's climate, and thus measurements of this balance are needed to improve our knowledge of Earth's climate and climate change. In the present paper we focus on the analysis of the surface shortwave radiation budget (SSRB), which is the amount of energy in the solar region of the electromagnetic spectrum (0.2–4.0 μm) absorbed at the surface. The SSRB has to be modeled from the surface to the top of the atmosphere, jointly with information about the state of the atmosphere and the surface. These data come from satellites orbiting the Earth and are often missing or disturbed. Its interest is not only at global scales; ra…

research product