6533b7cffe1ef96bd1258409
RESEARCH PRODUCT
Calibrating the effective scattering albedo in the SMOS algorithm: some first results
Ernesto Lopez-baezaYann KerrAhmad Al BitarArnaud MialonRoberto Fernandez-moranPhilippe RichaumeMarie ParrensAli MahmoodiG. De LannoyJean-pierre Wigneronsubject
L band010504 meteorology & atmospheric sciencesPixelScattering0211 other engineering and technologies[SDU.STU]Sciences of the Universe [physics]/Earth SciencesSingle parameter02 engineering and technologyVegetationSMAP15. Life on landAlbedo01 natural sciencesscattering albedoCalibrationEnvironmental sciencesoil moistureL-MEB modelAlgorithmWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSMOSdescription
International audience; This study focuses on the calibration of the effective scattering albedo (ω) of vegetation in the soil moisture (SM) retrieval at L-Band. Currently, in the SMOS Level 2 and 3 algorithms, the value of ω is set to 0 for low vegetation and ∼ 0.06 – 0.08 for forests. Different parameterizations of vegetation (in terms of ω values) were tested in this study. The possibility of combining soil roughness and vegetation contributions as a single parameter (“combined” method) leads to an important simplification in the algorithm and was also evaluated here. Following these assumptions, retrieved values of SMOS SM were compared with SM data measured over many in situ sites worldwide from the International Soil Moisture Network. These validation sites were classified using the International Geosphere-Biosphere Programme (IGBP) classification scheme. In situ SM measurements and SM retrievals were compared, and statistical scores were computed. The optimum albedo configuration was then found for each class of the IGBP landcover classification. Preliminary results yield values of albedo between 0.07 to 0.12 under the assumption of homogeneous pixels.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-10 |