0000000000061910

AUTHOR

Manuel Johannes

Synthesis of a MUC1-glycopeptide-BSA conjugate vaccine bearing the 3'-deoxy-3'-fluoro-Thomsen-Friedenreich antigen.

A novel MUC1-glycopeptide–BSA conjugate vaccine with a specifically fluorinated Thomsen–Friedenreich antigen side chain at Thr6 was prepared. Preliminary immunological experiments reveal specific binding of the tumor-associated glycopeptide antigen analog by anti-MUC1-mouse antibodies.

research product

Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4’-deoxy-4’-fluoro-Thomsen–Friedenreich epitope

The development of selective anticancer vaccines that provide enhanced protection against tumor recurrence and metastasis has been the subject of intense research in the scientific community. The tumor-associated glycoprotein MUC1 represents a well-established target for cancer immunotherapy and has been used for the construction of various synthetic vaccine candidates. However, many of these vaccine prototypes suffer from an inherent low immunogenicity and are susceptible to rapid in vivo degradation. To overcome these drawbacks, novel fluorinated MUC1 glycopeptide-BSA/TTox conjugate vaccines have been prepared. Immunization of mice with the 4’F-TF-MUC1-TTox conjugate resulted in strong im…

research product

Synthesis of fluorinated Thomsen-Friedenreich antigens: direct deoxyfluorination of αGalNAc-threonine tert-butyl esters.

Selectively 6-fluorinated analogs of the tumor-associated T(N) antigen Fmoc-Thr(α-O-GalNAc)-OtBu can be efficiently prepared using DAST-mediated de(hydr)oxyfluorination reactions of preformed and orthogonally protected glycosyl amino esters without affecting the labile protecting groups and O-glycosidic linkages. The resulting mono- and difluorinated T(N) analogs are interesting building blocks for non-hydrolyzable mucin-type antigen mimetics, as illustrated by the unprecedented synthesis of two different multiply fluorinated Thomsen-Friedenreich derivatives. The reported deoxyfluoro antigen analogs represent important functional probes for carbohydrate-binding proteins and glycosyl-process…

research product