0000000000064385

AUTHOR

Alessandro Trombetta

showing 10 related works from this author

Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$

2019

In this paper for any $\varepsilon >0$ we construct a new proper $k$-ball-contractive retraction of the closed unit ball of the Banach space $C^m [0,1]$ onto its boundary with $k < 1+ \varepsilon$, so that the Wośko constant $W_\gamma (C^m [0,1])$ is equal to $1$.

Unit spherePure mathematicsmeasure of noncompactneSettore MAT/05 - Analisi MatematicaApplied MathematicsBanach spaceRetraction ProblemBall (mathematics)proper mappingAnalysisRetractionMathematicsTopological Methods in Nonlinear Analysis
researchProduct

Proper 1-ball contractive retractions in Banach spaces of measurable functions

2005

In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…

Discrete mathematicsUnit spherePure mathematicsMeasurable functionGeneral MathematicsBanach spaceLipschitz continuityInfimum and supremumIsolated pointDistortion problemMultivalued mapMapBall (mathematics)minimal displacementMathematics
researchProduct

Compactness in Groups of Group-Valued Mappings

2022

We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Fr&eacute;chet&ndash;&Scaron;mulian and Ascoli&ndash;Arzel&agrave; compactness criteria found in the literature.

equimeasurabilitySettore MAT/05 - Analisi MatematicaGeneral Mathematicsuniform quasiboundednessComputer Science (miscellaneous)convergence (and local convergence) in measuremeasure of noncompactnessgroupgroup; pseudonorm; convergence (and local convergence) in measure; measure of noncompactness; equimeasurability; uniform quasiboundednesspseudonormEngineering (miscellaneous)Mathematics
researchProduct

Rearrangement and convergence in spaces of measurable functions

2007

We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to th…

Discrete mathematicsMathematics::Functional AnalysisSequenceConvergence in measureLebesgue measureMeasurable functionlcsh:MathematicsApplied Mathematicslcsh:QA1-939Space (mathematics)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESSet functionData_FILESDiscrete Mathematics and CombinatoricsHausdorff measureAlmost everywhereAnalysisMathematics
researchProduct

An extension of Guo's theorem via k--contractive retractions

2006

Abstract Let X be a infinite-dimensional Banach space. We generalize Guo's Theorem [D.J. Guo, Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math. 2 (1981) 65–80 [English]] to k- ψ -contractions and condensing mappings, under a condition which depends on the infimum k ψ of all k ⩾ 1 for which there exists a k- ψ -contractive retraction of the closed unit ball of the space X onto its boundary.

Unit spherePure mathematicsApplied MathematicsMathematical analysisFixed-point indexBanach spaceInfimum and supremumAnalysisEigenvalues and eigenvectorsNonlinear operatorsMathematicsNonlinear Analysis: Theory, Methods &amp; Applications
researchProduct

On Boundary Conditions for Wedge Operators on Radial Sets

2008

We present a theorem about calculation of fixed point index for k-$\psi$-contractive operators with 0 < k <1 defined on a radial set of a wedge of an infinite dimensional Banach space. Then results on the existence of eigenvectors and nonzero fixed points are obtained.

Control and OptimizationRadial setMathematical analysisBanach spaceFixed-point indexMeasure of noncompactness k-$\psi$-contraction wedge relative fixed point index radial set.Fixed pointFixed-point propertyWedge (geometry)Computer Science ApplicationsSchauder fixed point theoremSettore MAT/05 - Analisi MatematicaSignal ProcessingAnalysisEigenvalues and eigenvectorsMathematicsNumerical Functional Analysis and Optimization
researchProduct

A remark on weakly convex continuous mappings in topological linear spaces

2009

Abstract Let C be a compact convex subset of a Hausdorff topological linear space and T : C → C a continuous mapping. We characterize those mappings T for which T ( C ) is convexly totally bounded.

Connected spaceHausdorff spaceWeakly convex continuous mappingTopological linear space weakly convex continuous mapping convexly totally bounded set weak Zima type set.TopologyChoquet theoryTopological linear spaceTopological vector spaceBounded operatorContinuous linear operatorWeak Zima type setLocally convex topological vector spaceConvexly totally bounded setGeometry and TopologyReflexive spaceMathematicsTopology and its Applications
researchProduct

Examples of proper k-ball contractive retractions in F-normed spaces

2007

Abstract Assume X is an infinite dimensional F -normed space and let r be a positive number such that the closed ball B r ( X ) of radius r is properly contained in X . The main aim of this paper is to give examples of regular F -normed ideal spaces in which there is a 1-ball or a ( 1 + e ) -ball contractive retraction of B r ( X ) onto its boundary with positive lower Hausdorff measure of noncompactness. The examples are based on the abstract results of the paper, obtained under suitable hypotheses on X .

Discrete mathematicsPure mathematicsApplied Mathematicsρ-Near retractionk-Ball contractionRegular F-normed ideal spaceRetractionHausdorff measure of noncompactnessHausdorff measureBall (mathematics)Hausdorff measure of noncompactneF-spaceAnalysisNormed vector spaceMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Monotonicity and total boundednessin spaces of measurable functions

2017

Abstract We define and study the moduli d(x, 𝓐, D) and i(x, 𝓐,D) related to monotonicity of a given function x of the space L 0(Ω) of real-valued “measurable” functions defined on a linearly ordered set Ω. We extend the definitions to subsets X of L 0(Ω), and we use the obtained quantities, d(X) and i(X), to estimate the Hausdorff measure of noncompactness γ(X) of X. Compactness criteria, in special cases, are obtained.

Pure mathematicslinear continuumMeasurable functionGeneral Mathematics010102 general mathematicsMonotonic function01 natural scienceslinearly ordered set010101 applied mathematicsmodulus of $A$-decreasemeasure of noncompactneLinear continuumSettore MAT/05 - Analisi Matematicamodulus of $A$-increase0101 mathematicsMeasurable functiontotal boundedneMathematics
researchProduct

Eigenvectors of k–ψ-contractive wedge operators

2008

Abstract We present new boundary conditions under which the fixed point index of a strict- ψ -contractive wedge operator is zero. Then we investigate eigenvalues and corresponding eigenvectors of k – ψ -contractive wedge operators.

Operator (computer programming)Applied MathematicsRadial setMathematical analysisFixed-point indexBoundary value problemOperator theoryWedge (geometry)Eigenvalues and eigenvectorsMathematicsApplied Mathematics Letters
researchProduct