6533b7d6fe1ef96bd1266f88

RESEARCH PRODUCT

Rearrangement and convergence in spaces of measurable functions

Alessandro TrombettaDiana CaponettiG. Trombetta

subject

Discrete mathematicsMathematics::Functional AnalysisSequenceConvergence in measureLebesgue measureMeasurable functionlcsh:MathematicsApplied Mathematicslcsh:QA1-939Space (mathematics)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESSet functionData_FILESDiscrete Mathematics and CombinatoricsHausdorff measureAlmost everywhereAnalysisMathematics

description

We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to the set of rearrangements.

10.1155/2007/63439http://hdl.handle.net/10447/18030