6533b7d6fe1ef96bd1266f88
RESEARCH PRODUCT
Rearrangement and convergence in spaces of measurable functions
Alessandro TrombettaDiana CaponettiG. Trombettasubject
Discrete mathematicsMathematics::Functional AnalysisSequenceConvergence in measureLebesgue measureMeasurable functionlcsh:MathematicsApplied Mathematicslcsh:QA1-939Space (mathematics)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESSet functionData_FILESDiscrete Mathematics and CombinatoricsHausdorff measureAlmost everywhereAnalysisMathematicsdescription
We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to the set of rearrangements.
year | journal | country | edition | language |
---|---|---|---|---|
2007-04-01 |