0000000000064591

AUTHOR

Marco Tarantola

Cytotoxicity of Metal and Semiconductor Nanoparticles Indicated by Cellular Micromotility

In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods…

research product

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, …

research product

Mechanical properties of MDCK II cells exposed to gold nanorods

Background: The impact of gold nanoparticles on cell viability has been extensively studied in the past. Size, shape and surface functionalization including opsonization of gold particles ranging from a few nanometers to hundreds of nanometers are among the most crucial parameters that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on the cellular response to external stimuli.Results: Mechanical properties of confluent MDCK II cells exposed to go…

research product

Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis.

Early determination of the metastatic potential of cancer cells is a crucial step for successful oncological treatment. Besides the remarkable progress in molecular genomics- or proteomics-based diagnostics, there is a great demand for in vitro biosensor devices that allow rapid and selective detection of the invasive properties of tumor cells. Here, the classical cancer cell motility in vitro assays for migration and invasion relying on Boyden chambers are compared to a real-time biosensor that analyzes the dynamic properties of adherent cells electro-acoustically with a time resolution on the order of seconds. The sensor relies on the well-established quartz crystal microbalance technique…

research product

Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells

Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 ± 4) nm and rods with a size of (38 ± 7) nm × (17 ± 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to v…

research product

A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy.

Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark-field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized par…

research product

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine–QDs, negatively charged dihydrolipoic acid–QDs and zwitterionic D-penicillamine–QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine–QDs were found to be the least cytotoxic, while D-penicillamine–QDs reduced the mitochondrial activ…

research product

From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates

This paper describes the synthesis of functional amphiphilic poly( N-(2-hydroxypropyl) methacrylamide)-block-poly(lauryl methacrylate) copolymers by RAFT polymerization via the intermediate step of activated ester block copolymers (pentafluoro-phenyl methacrylate). Block copolymers with molecular weights from 12000-28000 g/mol and PDIs of about 1.2 have been obtained. The amphiphilic diblock copolymers form stable super structures (nanoaggregates) by self-organization in aqueous solution. The diameters of these particles are between 100 and 200 nm and depend directly on the molecular weight of the block copolymer. Furthermore, we investigated the impact of these nanoaggregates on cell viabi…

research product

Pathogen-Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells

Here, design of the first pathogen-mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced …

research product