6533b859fe1ef96bd12b7ff3

RESEARCH PRODUCT

Pathogen-Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells

Mohammed Ibrahim ShukoorLaura M. SchreiberAndreas JanshoffMatthias BarzStefan A. L. WeberHelen Annal ThereseMaxim TerekhovMatthias WiensPatrick TheatoFilipe NatalioWolfgang TremelRudolf ZentelMarco TarantolaMuhammed Nawaz TahirWerner E.g. MüllerHeinz C. Schröder

subject

PhosphoramiditeMaterials scienceOligonucleotideNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsRhodaminechemistry.chemical_compoundchemistryCancer cellElectrochemistryBiophysicsSurface modification0210 nano-technologyDrug carrierBiosensor

description

Here, design of the first pathogen-mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced into the polymer chain to trace the nanoparticles in Caki-1 (human kidney cancer) cells. The ssDNA coupled nanoparticles are used to target Toll-like receptors 9 (TLR9) receptors inside the cells and to activate the classical TLR cascade. The presence of TLR9 is demonstrated independently in the Caki-1 cell line by western blotting and immunostaining techniques. The magnetic properties of the MnO core make functionalized MnO nanoparticles potential diagnostic agents for magnetic resonance imaging (MRI) thereby enabling multimodal detection by a combination of MR and optical imaging methods. The trimodal nanoparticles allow the imaging of cellular trafficking by different means and simultaneously are an effective drug carrier system.

https://doi.org/10.1002/adfm.200900635