Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves
We explore gravitational wave signals arising from first-order phase transitions occurring in a secluded hidden sector, allowing for the possibility that the hidden sector may have a different temperature than the Standard Model sector. We present the sensitivity to such scenarios for both current and future gravitational wave detectors in a model-independent fashion. Since secluded hidden sectors are of particular interest for dark matter models at the MeV scale or below, we pay special attention to the reach of pulsar timing arrays. Cosmological constraints on light degrees of freedom restrict the number of sub-MeV particles in a hidden sector, as well as the hidden sector temperature. Ne…
Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…
Photons, Photon Jets and Dark Photons at 750 GeV and Beyond
In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance $S \to \gamma\gamma$ can be mimicked by a process of the form $p p \to S \to a a \to 4\gamma$, where $S$ is a new scalar with a mass of 750 GeV and $a$ is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an $e^+e^-$ pair inside the inner detector. In this note, we quantify this discrimination power, an…
Gravitational wave probes of axionlike particles
We have recently shown that axions and axion-like particles (ALPs) may emit an observable stochastic gravitational wave (GW) background when they begin to oscillate in the early universe. In this note, we identify the regions of ALP parameter space which may be probed by future GW detectors, including ground- and space-based interferometers and pulsar timing arrays. Interestingly, these experiments have the ability to probe axions from the bottom up, i.e. in the very weakly coupled regime which is otherwise unconstrained. Furthermore, we discuss the effects of finite dark photon mass and kinetic mixing on the mechanism, as well as the (in)sensitivity to couplings of the axion to Standard Mo…
Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology
In the framework of the scotogenic model, which features radiative generation of neutrino masses, we explore light dark matter scenario. Throughout the paper we chiefly focus on keV-scale dark matter which can be produced either via freeze-in through the decays of the new scalars, or from the decays of next-to-lightest fermionic particle in the spectrum, which is produced through freeze-out. The latter mechanism is required to be suppressed as it typically produces a hot dark matter component. Constraints from BBN are also considered and in combination with the former production mechanism they impose the dark matter to be light. For this scenario we consider signatures at High Luminosity LH…
Compressed electroweakino spectra at the LHC
In this work, we examine the sensitivity of monojet searches at the LHC to directly produced charginos and neutralinos (electroweakinos) in the limit of small mass splitting, where the traditional multilepton plus missing energy searches loose their sensitivity. We first recast the existing 8 TeV monojet search at CMS in terms of a SUSY simplified model with only light gauginos (winos and binos) or only light higgsinos. The current searches are not sensitive to MSSM like production cross sections, but would be sensitive to models with 2-20 times enhanced production cross section, for particle masses between 100 GeV and 250 GeV. Then we explore the sensitivity in the 14 TeV run of the LHC. H…
Detecting gravitational waves from cosmological phase transitions with LISA: an update
MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…
Whispers from the dark side: Confronting light new physics with NANOGrav data
The NANOGrav collaboration has recently observed first evidence of a gravitational wave background (GWB) in pulsar timing data. Here we explore the possibility that this GWB is due to new physics, and show that the signal can be well fit also with peaked spectra like the ones expected from phase transitions (PTs) or from the dynamics of axion like particles (ALPs) in the early universe. We find that a good fit to the data is obtained for a very strong PT at temperatures around 1 MeV to 10 MeV. For the ALP explanation the best fit is obtained for a decay constant of $F \approx 5\times 10^{17}$ GeV and an axion mass of $2\times 10^{-13}$ eV. We also illustrate the ability of PTAs to constrain…
Ricci Reheating
We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass $m^{2} \propto -H^2$ for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures $T_{\rm RH} \l…
Gravitational Waves from an Axion-Dark Photon System: A Lattice Study
In this work, we present a lattice study of an axion - dark photon system in the early Universe and show that the stochastic gravitational wave (GW) background produced by this system may be probed by future GW experiments across a vast range of frequencies. The numerical simulation on the lattice allows us to take into account non-linear backreaction effects and enables us to accurately predict the final relic abundance of the axion or axion-like particle (ALP) as well as its inhomogeneities, and gives a more precise prediction of the GW spectrum. Importantly, we find that the GW spectrum has more power at high momenta due to $2\rightarrow1$ processes. Furthermore, we find the degree of po…
Gravitational Wave Echo of Relaxion Trapping
To solve the hierarchy problem, the relaxion must remain trapped in the correct minimum, even if the electroweak symmetry is restored after reheating. In this scenario, the relaxion starts rolling again until the backreaction potential, with its set of local minima, reappears. Depending on the time of barrier reappearance, Hubble friction alone may be insufficient to retrap the relaxion in a large portion of the parameter space. Thus, an additional source of friction is required, which might be provided by coupling to a dark photon.The dark photon experiences a tachyonic instability as the relaxion rolls, which slows down the relaxion by backreacting to its motion, and efficiently creates a…
Discovering the h→Zγ decay in tt¯ associated production
We explore the prospects to discover the $h \to Z \gamma$ decay in $t\bar t$-associated production, featuring a signal-to-background ratio of ${\cal O}(1)$. Performing a detailed analysis of the semi-leptonic $t \bar t $-decay channel, we demonstrate that the production mode could lead to a $\sim5\,\sigma$ discovery at the high-luminosity LHC, while the effective $h Z \gamma$ coupling could be extracted with a $\sim15\,\%$ accuracy. Extending the analysis to potential future $pp$ colliders with 27 TeV and 100 TeV center-of-mass energies, we also show that the latter would allow precision measurements at the few percent level, rendering possible precise extractions of the spin and CP propert…