6533b85ffe1ef96bd12c1291

RESEARCH PRODUCT

Ricci Reheating

Toby OpferkuchPedro SchwallerBen A. Stefanek

subject

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGeneral Relativity and Cosmologygr-qcFOS: Physical sciencesAstronomy and Astrophysicshep-phAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesastro-ph.CO010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsParticle Physics - Phenomenology

description

We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass $m^{2} \propto -H^2$ for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures $T_{\rm RH} \lesssim 1$ GeV, the possibility exists for the Higgs field to play the role of the scalar field.

https://dx.doi.org/10.48550/arxiv.1905.06823